首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staib C  Drexler I  Ohlmann M  Wintersperger S  Erfle V  Sutter G 《BioTechniques》2000,28(6):1137-42, 1144-6, 1148
Recombinant vaccinia viruses are extremely valuable tools for research in molecular biology and immunology. The extension of vaccinia vector technology to replication-deficient and safety-tested virus strains such as modified vaccinia virus Ankara (MVA) have made this versatile eukaryotic expression system even more attractive for basic and clinical research. Here, we report on easily obtaining recombinant MVA using stringent growth selection on rabbit kidney RK-13 cells. We describe the construction and use of new MVA vector plasmids that carry an expression cassette of the vaccinia virus host range gene, K1L, as a transient selectable marker. These plasmids allow either stable insertion of additional recombinant genes into the MVA genome or precisely targeted mutagenesis of MVA genomic sequences. Repetitive DNA sequences flanking the K1L gene were designed to remove the marker gene from the viral genome by homologous recombination under nonselective growth conditions. The convenience of this new selection technique is demonstrated by isolating MVA recombinants that produce green fluorescent protein and by generating MVA deletion mutants.  相似文献   

2.
3.
4.
The modified vaccinia virus Ankara (MVA) strain is a candidate vector for vaccination against pathogens and tumors, due to safety concerns and the proven ability of recombinants based on this vector to trigger protection against pathogens in animals. In this study we addressed the fate of the MVA vector in BALB/c mice after intraperitoneal inoculation in comparison with that of the replication-competent Western Reserve (WR) strain by measuring levels of expression of the reporter luciferase gene, the capability to infect target tissues from the site of inoculation, and the length of time of virus persistence. We evaluated the extent of humoral and cellular immune responses induced against the virus antigens and a recombinant product (beta-galactosidase). We found that MVA infects the same target tissues as the WR strain; surprisingly, within 6 h postinoculation the levels of expression of antigens were higher in tissues from MVA-infected mice than in tissues from mice infected with wild-type virus but at later times postinoculation were 2 to 4 log units higher in tissues from WR-infected mice. In spite of this, antibodies and cellular immune responses to viral vector antigens were considerably lower in MVA-inoculated mice than in WR virus-inoculated mice. In contrast, the cellular immune response to a foreign antigen expressed from MVA was similar to and even higher than that triggered by the recombinant WR virus. MVA elicited a Th1 type of immune response, and the main proinflammatory cytokines induced were interleukin-6 and tumor necrosis factor alpha. Our findings have defined the biological characteristics of MVA infection in tissues and the immune parameters activated in the course of virus infection. These results are of significance with respect to optimal use of MVA as a vaccine.  相似文献   

5.
Modified vaccinia virus Ankara (MVA) is a highly attenuated vaccinia virus that is under consideration as an alternative to the conventional smallpox vaccine Dryvax. MVA was attenuated by extensive passage of vaccinia virus Ankara in chicken embryo fibroblasts. Several immunomodulatory genes and genes that influence host range are deleted or mutated, and replication is aborted in the late stage of infection in most nonavian cells. The effect of these mutations on immunogenicity is not well understood. Since the structural genes appear to be intact in MVA, it is hypothesized that critical targets for antibody neutralization have been retained. To test this, we probed microarrays of the Western Reserve (WR) proteome with sera from humans and macaques after MVA and Dryvax vaccination. As most protein sequences of MVA are 97 to 99% identical to those of other vaccinia virus strains, extensive binding cross-reactivity is expected, except for those deleted or truncated. Despite different hosts and immunization regimens, the MVA and Dryvax antibody profiles were broadly similar, with antibodies against membrane and core proteins being the best conserved. The responses to nonstructural proteins were less well conserved, although these are not expected to influence virus neutralization. The broadest antibody response was obtained for hyperimmune rabbits with WR, which is pathogenic in rabbits. These data indicate that, despite the mutations and deletions in MVA, its overall immunogenicity is broadly comparable to that of Dryvax, particularly at the level of antibodies to membrane proteins. The work supports other information suggesting that MVA may be a useful alternative to Dryvax.  相似文献   

6.
Highly attenuated modified vaccinia virus Ankara (MVA) serves as a candidate vaccine to immunize against infectious diseases and cancer. MVA was randomly obtained by serial growth in cultures of chicken embryo fibroblasts (CEF), resulting in the loss of substantial genomic information including many genes regulating virus-host interactions. The vaccinia virus interferon (IFN) resistance gene E3L is among the few conserved open reading frames encoding viral immune defense proteins. To investigate the relevance of E3L in the MVA life cycle, we generated the deletion mutant MVA-DeltaE3L. Surprisingly, we found that MVA-DeltaE3L had lost the ability to grow in CEF, which is the first finding of a vaccinia virus host range phenotype in this otherwise highly permissive cell culture. Reinsertion of E3L led to the generation of revertant virus MVA-E3rev and rescued productive replication in CEF. Nonproductive infection of CEF with MVA-DeltaE3L allowed viral DNA replication to occur but resulted in an abrupt inhibition of viral protein synthesis at late times. Under these nonpermissive conditions, CEF underwent apoptosis starting as early as 6 h after infection, as shown by DNA fragmentation, Hoechst staining, and caspase activation. Moreover, we detected high levels of active chicken alpha/beta IFN (IFN-alpha/beta) in supernatants of MVA-DeltaE3L-infected CEF, while moderate IFN quantities were found after MVA or MVA-E3rev infection and no IFN activity was present upon infection with wild-type vaccinia viruses. Interestingly, pretreatment of CEF with similar amounts of recombinant chicken IFN-alpha inhibited growth of vaccinia viruses, including MVA. We conclude that efficient propagation of MVA in CEF, the tissue culture system used for production of MVA-based vaccines, essentially requires conserved E3L gene function as an inhibitor of apoptosis and/or IFN induction.  相似文献   

7.
Modified vaccinia virus Ankara (MVA) has a highly restricted host range in cell culture and is apathogenic in vivo. MVA was derived from the parental chorioallantois vaccinia virus Ankara (CVA) by more than 570 passages in chicken embryo fibroblast (CEF) cells. During CEF cell passaging, six major deletions comprising 24,668 nucleotides occurred in the CVA genome. We have cloned both the MVA and the parental CVA genome as bacterial artificial chromosomes (BACs) and have sequentially introduced the six major MVA deletions into the cloned CVA genome. Reconstituted mutant CVA viruses containing up to six major MVA deletions showed no detectable replication restriction in 12 of 14 mammalian cell lines tested; the exceptions were rabbit cell lines RK13 and SIRC. In mice, CVA mutants with up to three deletions showed slightly enhanced virulence, suggesting that gene deletion in replicating vaccinia virus (VACV) can result in gain of fitness in vivo. CVA mutants containing five or all six deletions were still pathogenic, with a moderate degree of attenuation. Deletion V was mainly responsible for the attenuated phenotype of these mutants. In conclusion, loss or truncation of all 31 open reading frames in the six major deletions is not sufficient to reproduce the specific MVA phenotype of strong attenuation and highly restricted host range. Mutations in viral genes outside or in association with the six major deletions appear to contribute significantly to this phenotype. Host range restriction and avirulence of MVA are most likely a cooperative effect of gene deletions and mutations involving the major deletions.Modified vaccinia virus Ankara (MVA) was derived from the parental strain chorioallantois vaccinia virus Ankara (CVA) by more than 570 passages in chicken embryo fibroblast (CEF) cells and became severely host cell restricted to avian cells (6, 9, 26). MVA is apathogenic in mammalian hosts, while maintaining excellent immunogenicity (5, 18, 41, 46). Due to the versatility of MVA as a gene expression vector and its immunogenicity, MVA offers an attractive basis for recombinant vector vaccines (17, 48, 50). In addition, the recent appreciation of the possibility of accidental or deliberate release of the smallpox virus renewed interest in an MVA-based smallpox vaccine. MVA was used in the 1970s as a priming vaccine prior to the administration of conventional smallpox vaccine in a two-step program. No significant adverse events were reported after the administration of MVA to more than 120,000 primary vaccinees in Germany (27, 45). Recent clinical studies using a third-generation vaccine, MVA-BN, as a stand-alone smallpox vaccine confirmed its excellent safety profile (56, 57) and underscored its potential as a safe vaccine vector against human infections with various pathogens as well as against cancer.One important reason for the versatility of MVA as a vaccine vector is its particular host range phenotype, which allows the viral gene expression program to proceed until late times in infection, resulting in efficient expression of viral as well as recombinant proteins. The block in viral replication occurs very late during assembly of mature and infectious viral particles (42, 48). With the notable exception of the Syrian hamster cell line BHK-21 and the recently described rat cell line IEC-6, MVA has a very limited ability to productively replicate in mammalian cells (9, 16, 35). The genetic basis of the particular host range restriction of MVA is still not well defined. Comparisons with NYVAC, another replication-deficient vaccinia virus vector (54), showed that significant differences in gene expression programs, apoptosis induction, and immunogenicity exist between NYVAC and MVA (19, 31, 32), although they have very similar host ranges in vitro. Thus, comprehensive knowledge of the genetic factors determining the host ranges of such vectors is necessary to provide a deeper understanding of the basis for the safety and immunogenicity to eventually allow their further optimization.In the course of passaging CVA on CEF cells, the virus acquired six large genomic deletions totaling more than 24 kbp of genomic DNA and deleting or truncating 31 open reading frames (ORFs). In addition to the six major deletions, a multitude of shorter deletions and insertions as well as point mutations have occurred in the MVA genome, resulting in gene fragmentation, truncation, short internal deletions, and amino acid exchanges (29). Some or all of these mutations might also contribute to the attenuated phenotype of MVA. MVA no longer encodes many of the known poxviral immune evasion and virulence factors (2). Of the five classical host range genes present in vaccinia virus (VACV), only C12L/SPI-1 and K1L are deleted or truncated in MVA, whereas C7L, K3L, and E3L are preserved. Deletion of C12L/SPI-1 and K1L contributed to the limited MVA host range, but their reconstitution only partially reversed the MVA host range restriction in selected cell lines (49, 59). Marker rescue experiments using large fragments of the CVA genome suggested that at least two further host range genes apart from C12L/SPI-1, C7L, and K1L might reside in the left part of the VACV genome (59).It is presently unknown how the multiple genetic alterations of MVA determine its limited ability to replicate in most mammalian cells and its lack of pathogenicity in vivo. Since restricted host range and lack of pathogenicity of MVA have commonly been associated with the large deletions in the MVA genome, we aimed at sequentially introducing the six major MVA-like deletions in CVA. To facilitate and accelerate mutagenesis, we have generated bacterial artificial chromosome (BAC) clones of both the MVA and CVA genomes. The use of a counterselectable marker allowed multiple consecutive rounds of mutagenesis of the CVA-BAC (39, 58, 62). The resulting CVA mutants showed that even the introduction of all six major MVA deletions did not create an MVA-like host range phenotype and caused only slight attenuation of the parental CVA virus in a murine intranasal infection model. This result indicates that major host range determinants of MVA are located outside the six large deletions. The host range and virulence phenotype of MVA most probably result from a combined effect of mutation of these unknown factors in conjunction with the six major deletions.  相似文献   

8.
Sánchez-Puig JM  Blasco R 《BioTechniques》2005,39(5):665-6, 668, 670 passim
Modified vaccinia Ankara (MVA) is a highly attenuated vaccine vector that has an excellent vaccine safety record. Also, as a eukaryotic gene expression vector, MVA can be used in a biosafety level 1 setup, in contrast to more virulent vaccinia virus strains. Isolation of recombinant MVA involves repeated plaquing of the virus and is burdensome because virus plaques are slow to develop and difficult to recognize. To facilitate the generation of MVA recombinants, we have developed a cloning system for MVA based on the selection of the viral F13L gene. Deletion of F13L in MVA produced a small plaque phenotype and a reduction in extracellular virus formation, indicating a severe block in cell-to-cell spread. When using the F13L knockout virus as the parental virus, reintroduction of the F13L gene in the original locus was used as an efficient selection for the isolation of virus recombinants. The selection procedure can be done entirely in the permissive baby hamster kidney (BHK)-21 cell line, does not require plaque isolation, and rendered close to 100% recombinant virus.  相似文献   

9.
Modified vaccinia virus Ankara (MVA) has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines.  相似文献   

10.
11.
We previously reported that mice immunized with recombinant modified vaccinia virus Ankara (MVA) encoding Japanese encephalitis virus (JEV) prM and E genes were completely protected against JEV challenge (Nam, J.H., Wyatt, L.S., Chae, S.L., Cho, H.W., Park, Y.K., Moss, B. Vaccine 1999,17: 261-268). In this study, we examined the immunogenicity in swine of this recombinant MVA (vJH9) or a DNA vaccine (pcJH-1) expressing the same JEV genes. Although the booster effect in mice with a combination of vJH9, pcJH-1 and inactivated JEV commercial vaccine was not apparent by measuring JEV antibodies, the recombinant MVA vaccine (vJH9) and the DNA vaccine (pcJH-l) efficiently produced neutralizing antibodies in swine and 2 doses of each showed a booster effect in mice and swine. Therefore, both vJH9 and pcJH-1 are good candidates for a second generation JEV vaccine.  相似文献   

12.
Modified vaccinia virus Ankara (MVA) is a safe vector for high-level expression of proteins in mammalian cells. To simplify the molecular cloning procedures for shuttling genes into the MVA genome, we constructed generic destination plasmids that allow in vitro recombinational cloning (Gateway) and quick isolation of expression plasmids for any gene to be incorporated into the virus. Downstream purification steps were simplified by including N-terminal peptide tags (His, Strep, and Flag) in the generic plasmids. We demonstrate the ability to produce 10 mg of β-glucuronidase from 108 hamster cells and to purify tagged proteins with affinity gels.  相似文献   

13.
Sustained activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway in infected cells has been shown to be crucial for full replication efficiency of orthopoxviruses in cell culture. In infected cells, this pathway is mainly activated by the vaccinia virus growth factor (VGF), an epidermal growth factor (EGF)-like protein. We show here that chorioallantois vaccinia virus Ankara (CVA), but not modified vaccinia virus Ankara (MVA), induced sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in infected human 293 cells, although both viruses direct secretion of functional VGF. A CVA mutant lacking the O1L gene (CVA-ΔO1L) demonstrated that the O1 protein was required for sustained upregulation of the ERK1/2 pathway in 293 cells as well as in other mammalian cell lines. The highly conserved orthopoxvirus O1L gene encodes a predicted 78-kDa protein with a hitherto-unknown function. CVA-ΔO1L showed reduced plaque size and an attenuated cytopathic effect (CPE) in infected cell cultures and reduced virulence and spread from lungs to ovaries in intranasally infected BALB/c mice. Reinsertion of an intact O1L gene into MVA, which in its original form harbors a fragmented O1L open reading frame (ORF), restored ERK1/2 activation in 293 cells but did not increase replication and spread of MVA in human or other mammalian cell lines. Thus, the O1 protein was crucial for sustained ERK1/2 activation in CVA- and MVA-infected human cells, complementing the autocrine function of VGF, and enhanced virulence in vivo.  相似文献   

14.
15.
16.
Live recombinants based on attenuated modified vaccinia virus Ankara (MVA) are potential vaccine candidates against a broad spectrum of diseases and tumors. To better understand the efficacy of MVA as a human vaccine, we analyzed by confocal and electron microscopy approaches MVA-induced morphological changes and morphogenetic stages during infection of human HeLa cells in comparison to other strains of vaccinia virus (VV): the wild-type Western Reserve (WR), Ankara, and the New York City Board of Health (NYCBH) strains. Confocal microscopy studies revealed that MVA infection alters the cytoskeleton producing elongated cells (bipolar), which do not form the characteristic actin tails. Few virions are detected in the projections connecting neighboring cells. In contrast, cells infected with the WR, Ankara, and NYCBH strains exhibit a stellated (multipolar) or rounded morphology with actin tails. A detailed transmission electron microscopy analysis of HeLa cells infected with MVA showed important differences in fine ultrastructure and amounts of the viral intermediates compared to cells infected with the other VV strains. In HeLa cells infected with MVA, the most abundant viral forms are intracellular immature virus, with few intermediates reaching the intracellular mature virus (IMV) form, at various stages of maturation, which exhibit a more rounded shape than IMVs from cells infected with the other VV strains. The "IMVs" from MVA-infected cells have an abnormal internal structure ("atypical" viruses) with potential alterations in the core-envelope interactions and are unable to significantly acquire the additional double envelope to render intracellular envelope virus. The presence of potential cell-associated envelope virus is very scarce. Our findings revealed that MVA in human cells promotes characteristic morphological changes to the cells and is able to reach the IMV stage, but these virions were not structurally normal and the subsequent steps in the morphogenetic pathway are blocked.  相似文献   

17.
18.
Interleukin-1 (IL-1) mediates numerous host responses through rapid activation of nuclear factor-kappaB (NF-kappaB), but signal pathways leading to the NF-kappaB activation appear to be complicated and multiplex. We propose a novel regulatory system for NF-kappaB activation by the extracellular signal-related kinase (ERK) pathway. In a human glioblastoma cell line, T98G, IL-1-induced NF-kappaB activation was significantly augmented by the pretreatment of a specific MEK inhibitor, PD98059. In contrast, ectopic expression of a constitutive activated form of Raf (v-Raf) reduced IL-1-induced NF-kappaB activation, and this inhibition was completely reversed by PD98059. Interestingly, PD98059 sustained IL-1-induced NF-kappaB DNA binding activity by an electrophoretic mobility shift assay and also IkappaBalpha degradation, presumably by augmenting and sustaining the proteasome activation. Concomitantly, two NF-kappaB dependent genes, A20 and IkappaBalpha expression were prolonged with PD98059. These data suggested that MEK-ERK pathway exerts a regulatory effect on NF-kappaB activation, providing a novel insight on the role of MEK-ERK pathway.  相似文献   

19.
20.
Infection with viruses often protects the infected cell against external stimuli to apoptosis. Here we explore the balance of apoptosis induction and inhibition for infection with the modified vaccinia virus Ankara (MVA), using two MVA mutants with experimentally introduced deletions. Deletion of the E3L-gene from MVA transformed the virus from an inhibitor to an inducer of apoptosis. Noxa-deficient mouse embryonic fibroblasts (MEF) were resistant to MVA-DeltaE3L-induced apoptosis. When the gene encoding F1L was deleted from MVA, apoptosis resulted that required Bak or Bax. MVA-DeltaF1L-induced apoptosis was blocked by Bcl-2. When expressed in HeLa cells, F1L blocked apoptosis induced by forced expression of the BH3-only proteins, Bim, Puma and Noxa. Finally, biosensor analysis confirmed direct binding of F1L to BH3 domains. These data describe a molecular framework of how a cell responds to MVA infection by undergoing apoptosis, and how the virus blocks apoptosis by interfering with critical steps of its signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号