首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Summary A quiescent Uq transposable element has been activated in a maize plant treated with 5-aza-2-deoxycyti-dine. This activated Uq cosegregates with a heritable dominant miniature (Mn) kernel phenotype, indicating its physical association with a maize miniature locus (Mn:: Uq). The Mn:: Uq mutant is dominant in producing a miniature seed phenotype of variable size and in reducing seedling vigor in the early growth stage. Genetic experiments indicate that the Mn:: Uq mutant also affects the activity of the male gametophyte, whereby pollen germination is inhibited, thus lacking pollen tube growth resulting in the male nontransmissibility of this mutant. Proof for the Uq element in this mutant is derived by its ability to transactivate the standard a-ruq reporter allele to yield spotted aleurone tissue. However, the Mn:: Uq mutant does not transactivate a normally Uq-responsive c-ruq allele, suggesting a structural difference between the two ruq receptors at the A1 and C1 loci. It is anticipated that cloning of the Uq transposable element would facilitate the molecular cloning and characterization of the maize miniature gene.Journal Paper No. J-13425 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011, USA, Project No. 2850  相似文献   

5.
6.
The effect of Ac copy number on the frequency and timing of germinal transposition in tobacco was investigated using the streptomycin phosphotransferase gene (SPT) as an excision marker. The activity of one and two copies of the element was compared by selecting heterozygous and homozygous progeny of transformants carrying single SPT::Ac inserts. It was observed that increasing gene copy not only increases the transposition frequency, but also occasionally alters the timing of transposition such that earlier events are obtained. The result is that some homozygous plants generate multiple streptomycin resistant progeny carrying the same transposed Ac (trAc) element. We have also investigated the effect of modification of the sequence in the region around 82 bp downstream of the polyadenylation site and 177 bp from the 3 end of the element on germinal excision frequencies. Alteration of three bases to create a BglII site at this location caused a minor decrease in germinal excision events, but insertion of four bases to create a Cla I site caused a 10-fold decrease in the transposition activity of the Ac element.  相似文献   

7.
8.
9.
To evaluate the prospects for transposon mutagenesis in the autogamous diploid legume Lotus japonicus, the behaviour of the maize transposable element Ac was analysed in the progeny of 38 independent transgenic plants. The conditions for monitoring donor site excision using histochemical localization of -glucuronidase activity or the alternative spectinomycin resistance assay were established, and used to follow Ac mobility through two generations. Somatic excision was monitored as variegated cotyledons in the T2 generation and germinal excision events were scored in segregating T3 families as complete -glucuronidase-mediated staining of cotyledons or as a fully green spectinomycin-resistant phenotype. Using these assays an average germinal excision frequency of 12% was estimated in the T3 offspring from variegated plants. The fidelity of the excision assays was ascertained by comparing the frequency of germinal excision to the frequency of Ac reinsertion at new positions of the genome. Transposition of Ac in 42% of the plants and detection of the characteristic Ac insertion/excision footprints suggests that insertion mutagenesis with the autonomous maize Activator element is feasible in Lotus japonicus. Parameters influencing Ac behaviour, such as dosage, position effects and modification of the element itself, were also investigated comparing homozygous and hemizygous plants from the same family and by analysing different transformants.Abbreviations W white - V variegated - FG fully green - FB fully blue - aadA spectinomycin adenyltransferase  相似文献   

10.
Summary The maize mutable allele bz-m2 (Ac), which arose from insertion of the 4.6 kb Ac element in the bz (bronze) locus, gives rise to stable bz (bz-s) derivatives that retain an active Ac element closely linked to bz. In the derivative bz-s:2114 (Ac), the Ac element is recombinationally inseparable from bz and transposes to unlinked sites at a frequency similar to that in the progenitor allele bzm2 (Ac). Both alleles have been cloned and sequenced. The bz-s:2114 (Ac) mutation retains Ac at the original site of insertion, but has lost a 789 pb upstream bz sequence adjacent to the insertion, hence the stable phenotype. The 8 bp target site direct repeat flanking the Ac insertion in the bz-m2 (Ac) allele is deleted in bz-s: 2114 (Ac), yet the Ac element is not impaired in its ability to transpose. The only functional Ac element in bz-s:2114 (Ac) is the one at the bz locus: in second-cycle derivatives without Ac activity, the loss of Ac activity correlated with the physical loss of the Ac element from the bz locus. The deletion endpoint in bz-s: 2114 (Ac) corresponds exactly with the site of insertion of a Ds element in a different bz mutation, which suggests that there may be preferred integration sites in the genome and that the deletion originated as the consequence of an abortive transposition event. Finally, we report two errors in the published Ac sequence.  相似文献   

11.
12.
13.
We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg erecta) and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms.  相似文献   

14.
15.
Five ab initio programs (FGENESH, GeneMark.hmm, GENSCAN, GlimmerR and Grail) were evaluated for their accuracy in predicting maize genes. Two of these programs, GeneMark.hmm and GENSCAN had been trained for maize; FGENESH had been trained for monocots (including maize), and the others had been trained for rice or Arabidopsis. Initial evaluations were conducted using eight maize genes (gl8a, pdc2, pdc3, rf2c, rf2d, rf2e1, rth1, and rth3) of which the sequences were not released to the public prior to conducting this evaluation. The significant advantage of this data set for this evaluation is that these genes could not have been included in the training sets of the prediction programs. FGENESH yielded the most accurate and GeneMark.hmm the second most accurate predictions. The five programs were used in conjunction with RT-PCR to identify and establish the structures of two new genes in the a1-sh2 interval of the maize genome. FGENESH, GeneMark.hmm and GENSCAN were tested on a larger data set consisting of maize assembled genomic islands (MAGIs) that had been aligned to ESTs. FGENESH, GeneMark.hmm and GENSCAN correctly predicted gene models in 773, 625, and 371 MAGIs, respectively, out of the 1353 MAGIs that comprise data set 2.these authors contributed equally to this work  相似文献   

16.
17.
HVA22 is an ABA- and stress-inducible gene first isolated from barley (Hordeum vulgare L.). Homologues of HVA22 have been found in plants, animals, fungi and protozoa, but not in prokaryotes, suggesting that HVA22 plays a unique role in eukaryotes. Five HVA22 homologues, designated AtHVA22a, b, c, d and e, have been identified in Arabidopsis. These five AtHVA22 homologues can be separated into two subfamilies, with AtHVA22a, b and c grouped in one subfamily and AtHVA22d and e in the other. Phylogenetic analyses show that AtHVA22d and e are closer to barley HVA22 than to AtHVA22a, bandc, suggesting that the two subfamilies had diverged before the divergence of monocots and dicots. The distribution and size of exons of AtHVA22 homologues and barley HVA22 are similar, suggesting that these genes are descendents of a common ancestor. AtHVA22 homologues are differentially regulated by ABA, cold, dehydration and salt stresses. These four treatments enhance AtHVA22a, d and e expression, but have little or even suppressive effect on AtHVA22c expression. ABA and salt stress induce AtHVA22b expression, but cold stress suppresses ABA induction of this gene. Expression of AtHVA22d is the most tightly regulated by these four treatments among the five homologues. In general, AtHVA22 homologues are expressed at a higher level in flower buds and inflorescence stems than in rosette and cauline leaves. The expression level of these homologues in immature siliques is the lowest among all tissues analyzed. It is suggested that some of these AtHVA22 family members may play a role in stress tolerance, and others are involved in plant reproductive development.  相似文献   

18.
19.
Luo K  Zheng X  Chen Y  Xiao Y  Zhao D  McAvoy R  Pei Y  Li Y 《Plant cell reports》2006,25(5):403-409
We have assessed the use of a homeobox gene knotted1 (kn1) from maize as a selectable marker gene for plant transformation. The kn1 gene under the control of cauliflower mosaic virus 35S promoter (35S::kn1) was introduced into Nicotiana tabacum cv. Xanthi via Agrobacterium-mediated transformation. Under nonselective conditions (without antibiotic selection) on a hormone-free medium (MS), a large number of transgenic calli and shoots were obtained from explants that were infected with Agrobacterium tumefaciens LBA4404 harboring the 35S::kn1 gene. On the other hand, no calli or shoots were produced from explants that were infected with an Agrobacterium strain harboring pBI121 (nptII selection) or from uninfected controls cultured under identical conditions. Relative to kanamycin selection conferred by nptII, the use of kn1 resulted in a 3-fold increase in transformation efficiency. The transgenic status of shoots obtained was confirmed by both histochemical detection of GUS activity and molecular analysis. The results presented here suggest that kn1 gene could be used as an effective alternative selection marker with a potential to enhance plant transformation efficiency in many plant species. With kn1 gene as a selection marker gene, no antibiotic-resistance or herbicide-resistance genes are needed so that potential risks associated with the use of these traditional selection marker genes can be eliminated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号