首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Bipartite geminiviruses, such as squash leaf curl virus (SqLCV), encode two movement proteins (MPs), BR1 and BL1, that are essential for viral movement in and subsequent infection of the host plant. To elucidate the biochemical functions of these MPs and define their respective contributions to viral infection, we have generated transgenic Nicotiana benthamiana plants expressing SqLCV BR1 and BL1. Transgenic plants expressing BR1 or a truncated BL1 were phenotypically indistinguishable from wild-type N. benthamiana. In contrast, transgenic plants expressing full-length BL1, alone or in combination with BR1, were strikingly abnormal both in their growth properties and phenotypic appearance, with leaves that were mosaic and curled under, thus mimicking typical SqLCV disease symptoms in this host. BL1 was localized to the cell wall and plasma membrane fractions, whereas BR1 was predominantly in the microsomal membrane fraction. These findings demonstrate that expression of BL1 in transgenic plants is sufficient to produce viral disease symptoms, and they further suggest that BL1 and BR1 carry out distinct and independent functions in viral movement.  相似文献   

3.
4.
Transgenic tobacco plants (Nicotiana tabacum cv. SR1) expressing extracellular pancreatic ribonuclease from Bos taurus and characterized by an increased level of ribonuclease activity in leaf extracts were challenged with tobacco mosaic virus. The transgenic plants exhibited a significantly higher level of protection against the virus infection than the control non-transformed plants. The protection was evidenced by the absence (or significant delay) of the appearance of typical mosaic symptoms and the retarded accumulation of infectious virus and viral antigen. These results demonstrate that modulation of extracellular nuclease expression can be efficiently used in promoting protection against viral diseases.  相似文献   

5.
Most whitefly-transmitted geminiviruses possess bipartite DNA genomes, and this feature may facilitate viral evolution through pseudorecombination and/or recombination. To test this hypothesis, the DNA-A and DNA-B components of the geminiviruses bean dwarf mosaic virus (BDMV) and tomato mottle virus (ToMoV) were exchanged, and the resultant pseudorecombinants were serially passaged through plants. Both pseudorecombinants were infectious in Nicotiana benthamiana but induced attenuated symptoms and had reduced DNA-B levels. Serial passage experiments revealed that the BDMV DNA-A plus ToMoV DNA-B pseudorecombinant could not be maintained beyond three passages. In contrast, the ToMoV DNA-A plus BDMV DNA-B pseudorecombinant was maintained during serial passage through N. benthamiana and Phaseolus vulgaris and, after three to five passages, became highly pathogenic. Furthermore, the increased pathogenicity of this pseudorecombinant was consistently associated with an increased level of DNA-B, which eventuated in equivalent levels of both components. Sequence analysis of the DNA-B component of the more pathogenic pseudorecombinant revealed that intermolecular recombination had taken place in which most of the BDMV DNA-B common region was replaced with the ToMoV DNA-A common region. This recombinant DNA-B component, which contained the ToMoV origin of replication, was the predominant DNA-B component associated with the more pathogenic pseudorecombinant. These results provide the first demonstration of recombination between distinct bipartite geminiviruses and establish that the bipartite genome can facilitate viral evolution through pseudorecombination and intermolecular recombination.  相似文献   

6.
A bacterial rnc gene coding for a double-stranded RNA-dependent RNase III endoribonuclease and a mutant, rnc70, were expressed in tobacco plants. The RNase III protein produced in the transgenic plants was the same size as the bacterial protein. Expression of the wild-type gene could cause stunting in some plant lines, but not in others. Expression of the mutant protein did not affect normal growth and development of the transgenic plants. Transgenic plants of the R1 and R2 generations, expressing the wild type, as well as a mutant protein, were resistant to infection by three disparate RNA plant viruses with a divided genome but not against two viruses with a single-stranded RNA genome. Introduction of the rnc gene in crop plants may provide resistance to economically important virus diseases.  相似文献   

7.
Transgenic pepper plants coexpressing coat proteins (CPs) of cucumber mosaic virus (CMV-Kor) and tomato mosaic virus (ToMV) were produced by Agrobacterium-mediated transformation. To facilitate selection for positive transformants in transgenic peppers carrying an L gene, we developed a simple and effective screening procedure using hypersensitive response upon ToMV challenge inoculation. In this procedure, positive transformants could be clearly differentiated from the nontransformed plants. Transgenic pepper plants expressing the CP genes of both viruses were tested for resistance against CMV-Kor and pepper mild mottle virus (PMMV). In most transgenic plants, viral propagation was substantially retarded when compared to the nontransgenic plants. These experiments demonstrate that our transgenic pepper plants might be a useful marker system for the transgene screening and useful for classical breeding programs of developing virus resistant hot pepper plants.  相似文献   

8.
A DNA cassette containing an Arabidopsis C repeat/dehydration-responsive element binding factor 1 (CBF1) cDNA and a nos terminator, driven by a cauliflower mosaic virus 35S promoter, was transformed into the tomato (Lycopersicon esculentum) genome. These transgenic tomato plants were more resistant to water deficit stress than the wild-type plants. The transgenic plants exhibited growth retardation by showing dwarf phenotype, and the fruit and seed numbers and fresh weight of the transgenic tomato plants were apparently less than those of the wild-type plants. Exogenous gibberellic acid treatment reversed the growth retardation and enhanced growth of transgenic tomato plants, but did not affect the level of water deficit resistance. The stomata of the transgenic CBF1 tomato plants closed more rapidly than the wild type after water deficit treatment with or without gibberellic acid pretreatment. The transgenic tomato plants contained higher levels of Pro than those of the wild-type plants under normal or water deficit conditions. Subtractive hybridization was used to isolate the responsive genes to heterologous CBF1 in transgenic tomato plants and the CAT1 (CATALASE1) was characterized. Catalase activity increased, and hydrogen peroxide concentration decreased in transgenic tomato plants compared with the wild-type plants with or without water deficit stress. These results indicated that the heterologous Arabidopsis CBF1 can confer water deficit resistance in transgenic tomato plants.  相似文献   

9.
Transgenic tobacco plants expressing the coat protein (CP) gene of tobacco mosaic virus were tested for resistance against infection by five other tobamoviruses sharing 45-82% homology in CP amino acid sequence with the CP of tobacco mosaic virus. The transgenic plants (CP+) showed significant delays in systemic disease development after inoculation with tomato mosaic virus or tobacco mild green mosaic virus compared to the control (CP-) plants, but showed no resistance against infection by ribgrass mosaic virus. On a transgenic local lesion host, the CP+ plants showed greatly reduced numbers of necrotic lesions compared to the CP- plants after inoculation with tomato mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, and Odontoglossum ringspot virus but not ribgrass mosaic virus. The implications of these results are discussed in relation to the possible mechanism(s) of CP-mediated protection.  相似文献   

10.
Three constructs were used to study the expression of the avirulence gene Avr9 from the fungal tomato pathogen Cladosporium fulvum in plants. They include pAVIR1, pAVIR2 and pAVIR21, encoding the wild-type AVR9 protein and two hybrid AVR9 proteins containing the signal sequences of the pathogenesis-related proteins PR-S and PR-1a, respectively. Transgenic tobacco plants obtained with the three constructs showed a normal phenotype and produced AVR9 elicitor with the same specific necrosis-inducing activity as the wild-type AVR9 elicitor produced in planta by isolates of C. fulvum containing the Avr9 gene. Level of expression was not correlated with number of T-DNA integrations, but plants homozygous for the Avr9 gene produced more elicitor protein than heterozygous plants. The amino acid sequence of the processed AVR9 peptide present in apoplastic fluid (AF) of pAVIR1 transformed plants producing the wild-type AVR9 elicitor was identical to that of the wild-type AVR9 peptide isolated from C. fulvum-infected tomato leaves. Transgenic Cf0 genotypes of tomato, obtained by transformation with construct pAVIR21, showed a normal phenotype. However, transgenic F1 plants expressing the Avr9 gene, obtained from crossing transgenic Cf0 genotypes with wild-type Cf9 genotypes, showed delayed growth, necrosis and complete plant death indicating that the AVR9 peptide produced in plants carrying the Cf9 gene is deleterious. The necrotic defence response observed in Cf9 genotypes expressing the Avr9 gene support the potential to apply avirulence genes in molecular resistance breeding.  相似文献   

11.
Previously, we identified a correlation between the interaction of the Tobacco mosaic virus (TMV) 126/183-kDa replicase with the auxin response regulator indole acetic acid (IAA)26/PAP1 and the development of disease symptoms. In this study, the TMV replicase protein is shown to colocalize with IAA26 in the cytoplasm and prevent its accumulation within the nucleus. Furthermore, two additional auxin (Aux)/IAA family members, IAA27 and IAA18, were found to interact with the TMV replicase and displayed alterations in their cellular localization or accumulation that corresponded with their ability to interact with the TMV replicase. In contrast, the localization and accumulation of noninteracting Aux/IAA proteins were unaffected by the presence of the viral replicase. To investigate the effects of the replicase interaction on Aux/IAA function, transgenic plants expressing a proteolysis-resistant IAA26-P108L-green fluorescent protein (GFP) protein were created. Transgenic plants accumulating IAA26-P108L-GFP displayed an abnormal developmental phenotype that included severe stunting and leaf epinasty. However, TMV infection blocked the nuclear localization of IAA26-P108L-GFP and attenuated the developmental phenotype displayed by the transgenic plants. Combined, these findings suggest that TMV-induced disease symptoms can be attributed, in part, to the ability of the viral replicase protein to disrupt the localization and subsequent function of interacting Aux/IAA proteins.  相似文献   

12.
Transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) plants were regenerated after cocultivation of leaf explants withAgrobacterium tumefaciens strain LBA4404 harboring a plasmid that contained the coat protein (CP) gene of cucumber mosaic virus (CMV-As). PCR and Southern blot analyses revealed that the CMV CP gene was successfully introduced into the genomic DNA of the transgenic tobacco plants. Transgenic plants (CP+) expressing CP were obtained and used for screening the virus resistance. They could be categorized into three types after inoculation with the virus: virus-resistant, delay of symptom development, and susceptible type. Most of the CP+ transgenic tobacco plants failed to develop symptoms or showed systemic symptom development delayed for 5 to 42 days as compared to those of nontransgenic control plants after challenged with the same virus. However, some CP+ transgenic plants were highly susceptible after inoculation with the virus. Our results suggest that the CP-mediated viral resistance is readily applicable to CMV disease in other crops.  相似文献   

13.
The capacities of the begomoviruses Bean dwarf mosaic virus (BDMV) and Bean golden yellow mosaic virus (BGYMV) to differeBean dwarf mosaic viru certain common bean (Phaseolus vulgaris) cultivars were used to identify viral determinants of the hypersensitive response (HR) and avirulence (avr) in BDMV. A series of hybrid DNA-B components, containing BDMV and BGYMV sequences, was constructed and coinoculated with BDMV DNA-A (BDMV-A) or BDMVA-green florescent protein into seedlings of cv. Topcrop (susceptible to BDMV and BGYMV) and the BDMV-resistant cvs. Othello and Black Turtle Soup T-39 (BTS). The BDMV avr determinant, in bean hypocotyl tissue, was mapped to the BDMV BV1 open reading frame and, most likely, to the BV1 protein. The BV1 also was identified as the determinant of the HR in Othello. However, the HR was not required for resistance in Othello nor was it associated with BDMV resistance in BTS. BDMV BV1, a nuclear shuttle protein that mediates viral DNA export from the nucleus, represents a new class of viral avr determinant. These results are discussed in terms of the relationship between the HR and resistance.  相似文献   

14.
15.
16.
17.
Plants offer many advantages over bacteria as agents for bioremediation; however, they typically lack the degradative capabilities of specially selected bacterial strains. Transgenic plants expressing microbial degradative enzymes could combine the advantages of both systems. To investigate this possibility in the context of bioremediation of explosive residues, we generated transgenic tobacco plants expressing pentaerythritol tetranitrate reductase, an enzyme derived from an explosive-degrading bacterium that enables degradation of nitrate ester and nitroaromatic explosives. Seeds from transgenic plants were able to germinate and grow in the presence of 1 mM glycerol trinitrate (GTN) or 0.05 mM trinitrotoluene, at concentrations that inhibited germination and growth of wild-type seeds. Transgenic seedlings grown in liquid medium with 1 mM GTN showed more rapid and complete denitration of GTN than wild-type seedlings. This example suggests that transgenic plants expressing microbial degradative genes may provide a generally applicable strategy for bioremediation of organic pollutants in soil.  相似文献   

18.
Transgenic tomato plants expressing the gene of a chimeric protein (HAV VP1-Fc) consisting of human hepatitis A virus (HAV) VP1 and an Fc antibody fragment have been obtained. Recombinant VP1-Fc protein with a molecular mass of approximately 68 kDa was purified from transgenic tomato plants using Protein A Sepharose affinity chromatography. The recombinant protein elicited production of specific IgG antibodies in the serum after intraperitoneal immunization of BALB/c mice. The antibodies produced by mice against transgenic plant-derived recombinant VP1-Fc most likely recognize epitopes in the HAV viral antigen. Following vaccination with recombinant VP1-Fc protein, expression of IFN-γ and IL-4 were increased in splenocytes at the time of sacrifice. Our findings indicate that transgenic tomato plants can provide a useful system for the production of HAV antigens.  相似文献   

19.
The nucleocapsid gene of tomato spotted wilt virus Hawaiian L isolate in a sense orientation, and the GUS and NPTII marker genes, were introduced into peanut (Arachis hypogaea cv. New Mexico Valencia A) using Agrobacterium-mediated transformation. Modifications to a previously defined transformation protocol reduced the time required for production of transformed peanut plants. Transgenes were stably integrated into the peanut genome and transmitted to progeny. RNA expression and production of nucleocapsid protein in transgenic peanut were observed. Progeny of transgenic peanut plants expressing the nucleocapsid gene showed a 10- to 15-day delay in symptom development after mechanical inoculations with the donor isolate of tomato spotted wilt virus. All transgenic plants were protected from systemic tomato spotted wilt virus infection. Inoculated non-transformed control plants and plants transformed with a gene cassette not containing the nucleocapsid gene became systemically infected and displayed typical tomato spotted wilt virus symptoms. These results demonstrate that protection against tomato spotted wilt virus can be achieved in transgenic peanut plants by expression of the sense RNA of the tomato spotted wilt virus nucleocapsid gene  相似文献   

20.
The BV1 gene of the bipartite Begomovirus genome encodes a nuclear shuttle protein (NSP) that is also an avirulence determinant in common bean. The function of the NSP of two common bean-infecting bipartite begomoviruses, Bean dwarf mosaic virus (BDMV) and Bean golden yellow mosaic virus (BGYMV), was investigated using a series of hybrid DNA-B components expressing chimeric BDMV and BGYMV NSP, and genotypes of the two major common bean gene pools: Andean (cv. Topcrop) and Middle American (cvs. Alpine and UI 114). BDMV DNA-A coinoculated with HBDBG4 (BDMV DNA-B expressing the BGYMV NSP) and HBDBG9 (BDMV DNA-B expressing a chimeric NSP with the N-terminal 1 to 42 amino acids from BGYMV) overcame the BDMV resistance of UI 114. This established that the BDMV NSP is an avirulence determinant in UI 114, and mapped the domain involved in this response to the N-terminus, which is a variable surface-exposed region. BDMV DNA-A coinoculated with HBDBG10, expressing a chimeric NSP with amino acids 43 to 92 from BGYMV, was not infectious, revealing an essential virus-specific domain. In the BGYMV background, the BDMV NSP was a virulence factor in the Andean cv. Topcrop, whereas it was an avirulence factor in the Middle American cultivars, particularly in the absence of the BGYMV NSP. The capsid protein (CP) also played a gene pool-specific role in viral infectivity; it was dispensable for infectivity in the Andean cv. Topcrop, but was required for infectivity of BDMV, BGYMV, and certain hybrid viruses in the Middle American cultivars. Redundancy of the CP and NSP, which are nuclear proteins involved directly or indirectly in viral movement, provides a masking effect that may allow the virus to avoid host defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号