首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of our work has been the microencapsulation of dyes with lecithin from soybean, with the formation of liposomes, as a substitute for synthetic auxiliaries so as to improve the quality of the effluent. Current scenarios promote the disintegration and leakage of the liposomes, such as, changes in temperature, pH and the use of surfactants. Since dyeing process is a mix of all these parameters, we pretended to study each one separately. Rhodamine 6G fluorescence is known to be concentration quenched through the formation of non-fluorescent dimmers and, additionally, through the energy transfer from rhodamine monomer to these dimmers (Baptista ALF, Coutinho PJG, Real Oliveira MECD, Gomes JINR. Proceedings of 13th International Symposium of Surfactants, SIS 2000, Gainesville, USA, 2000). The temperature, the surfactant and pH induce a release of the encapsulated dye resulting in rhodamine dilution and consequently alterations in the dimerization/binding equilibrium. The experimental spectra indicate that rhodamine binds almost completely to liposomes. The decomposition of the rhodamine fluorescence spectra allowed us to determine the percentage of released dye during a simulated dyeing process, and allowed us to conclude that the dimerization process occurs mainly at the inner interfaces. The amount of dye released induced by temperature changes was greater in the presence of surfactant.  相似文献   

2.
Abstract

The objective of our work has been the microencapsulation of dyes with lecithin from soybean, with the formation of liposomes, as a substitute for synthetic auxiliaries so as to improve the quality of the effluent. Current scenarios promote the disintegration and leakage of the liposomes, such as, changes in temperature, pH and the use of surfactants. Since dyeing process is a mix of all these parameters, we pretended to study each one separately. Rhodamine 6G fluorescence is known to be concentration quenched through the formation of non-fluorescent dimmers and, additionally, through the energy transfer from rhodamine monomer to these dimmers (Baptista ALF, Coutinho PJG, Real Oliveira MECD, Gomes JINR. Proceedings of 13th International Symposium of Surfactants, SIS 2000, Gainesville, USA, 2000). The temperature, the surfactant and pH induce a release of the encapsulated dye resulting in rhodamine dilution and consequently alterations in the dimerization/binding equilibrium. The experimental spectra indicate that rhodamine binds almost completely to liposomes. The decomposition of the rhodamine fluorescence spectra allowed us to determine the percentage of released dye during a simulated dyeing process, and allowed us to conclude that the dimerization process occurs mainly at the inner interfaces. The amount of dye released induced by temperature changes was greater in the presence of surfactant.  相似文献   

3.
A novel F?rster donor-acceptor dye pair for an immunoassay based on resonance energy transfer (RET) is characterized with respect to its photophysical properties. As donor and acceptor, we chose the long-wavelength excitable cyanine dyes Cy5 and Cy5.5, respectively. Due to the perfect spectral overlap, an exceptionally high R(0) value of 68.7 A is obtained in solution. For biochemical applications, antibodies (IgG) are labeled with Cy5, while a tracer for competitive binding is synthesized by labeling bovine serum albumin (BSA) with an analyte derivative and Cy5.5. Binding the dyes to proteins at a low dye/protein ratio increases the fluorescence lifetimes and quantum yields, leading to an enhanced R(0) value of 85.2 A. At higher dye/protein ratios, the formation of nonfluorescent dimeric species causes a decrease in the fluorescence lifetime and quantum yield due to RET from monomeric dyes to dimers within one protein molecule. The F?rster distances could be calculated using the dimer absorption spectra to 83.9 and 83.6 A for Cy5 and Cy5.5, respectively. Upon binding of the Cy5-labeled IgG to the tracer, efficient quenching of Cy5 fluorescence is observed. Steady-state and time-resolved measurements reveal that approximately 50% of the quenching results in F?rster-type RET, while the residual quenching effect is caused by static quenching processes. The applicability of this dye pair is demonstrated in a homogeneous competitive immunoassay for the pesticide simazine.  相似文献   

4.
Moya I  Silvestri M  Vallon O  Cinque G  Bassi R 《Biochemistry》2001,40(42):12552-12561
We have studied the time-resolved fluorescence properties of the light-harvesting complexes (Lhc) of photosystem II (Lhcb) in order to obtain information on the mechanism of energy dissipation (non-photochemical quenching) which is correlated to the conversion of violaxanthin to zeaxanthin in excess light conditions. The chlorophyll fluorescence decay of Lhcb proteins LHCII, CP29, CP26, and CP24 in detergent solution is mostly determined by two lifetime components of 1.2-1.5 and 3.6-4 ns while the contribution of the faster component is higher in CP29, CP26, and CP24 with respect to LHCII. The xanthophyll composition of Lhc proteins affects the ratio of the lifetime components: when zeaxanthin is bound into the site L2 of LHCII, the relative amplitude of the faster component is increased and, consequently, the chlorophyll fluorescence quenching is enhanced. Analysis of quenching in mutants of Arabidopsis thaliana, which incorporate either violaxanthin or zeaxanthin in their Lhc proteins, shows that the extent of quenching is enhanced in the presence of zeaxanthin. The origin of the two fluorescence lifetimes was analyzed by their temperature dependence: since lifetime heterogeneity was not affected by cooling to 77 K, it is concluded that each lifetime component corresponds to a distinct conformation of the Lhc proteins. Upon incorporation of Lhc proteins into liposomes, a quenching of chlorophyll fluorescence was observed due to shortening of all their lifetime components: this indicates that the equilibrium between the two conformations of Lhcb proteins is displaced toward the quenched conformation in lipid membranes or thylakoids with respect to detergent solution. By increasing the protein density in the liposomes, and therefore the probability of protein-protein interactions, a further decrease of fluorescence lifetimes takes place down to values typical of quenched leaves. We conclude that at least two major factors determine the quenching of chlorophyll fluorescence in Lhcb proteins, i.e., intrasubunit conformational change and intersubunit interactions within the lipid membranes, and that these processes are both important in the photoprotection mechanism of nonphotochemical quenching in vivo.  相似文献   

5.
The water-soluble probe carboxyfluorescein (CF), contained in the internal aqueous phase of liposomes, was used to investigate the interaction of phospholipid vesicles with isolated nuclei. Ultrastructural analysis indicated that adherent liposomes coated the nuclear surface, and fluorescence microscopy showed that they contained quenching concentrations of the dye. Flow cytometry revealed that the transfer of the entrapped dye from the adhering liposomes to nuclei was blocked by chilling at 0 degrees C. Chase experiments demonstrated that the most reliable mechanism of dye transfer involved fusion phenomena between the liposomal and the nuclear membranes. After the release of the fluorophore into the nucleus, empty liposomes could withdraw the intranuclear soluble fraction of the dye.  相似文献   

6.
We studied the fluorescence resonance energy transfer (FRET) efficiency of different donor-acceptor labeled model DNA systems in aqueous solution from ensemble measurements and at the single molecule level. The donor dyes: tetramethylrhodamine (TMR); rhodamine 6G (R6G); and a carbocyanine dye (Cy3) were covalently attached to the 5'-end of a 40-mer model oligonucleotide. The acceptor dyes, a carbocyanine dye (Cy5), and a rhodamine derivative (JA133) were attached at modified thymidine bases in the complementary DNA strand with donor-acceptor distances of 5, 15, 25 and 35 DNA-bases, respectively. Anisotropy measurements demonstrate that none of the dyes can be observed as a free rotor; especially in the 5-bp constructs the dyes exhibit relatively high anisotropy values. Nevertheless, the dyes change their conformation with respect to the oligonucleotide on a slower time scale in the millisecond range. This results in a dynamic inhomogeneous distribution of donor/acceptor (D/A) distances and orientations. FRET efficiencies have been calculated from donor and acceptor fluorescence intensity as well as from time-resolved fluorescence measurements of the donor fluorescence decay. Dependent on the D/A pair and distance, additional strong fluorescence quenching of the donor is observed, which simulates lower FRET efficiencies at short distances and higher efficiencies at longer distances. On the other hand, spFRET measurements revealed subpopulations that exhibit the expected FRET efficiency, even at short D/A distances. In addition, the measured acceptor fluorescence intensities and lifetimes also partly show fluorescence quenching effects independent of the excitation wavelength, i.e. either directly excited or via FRET. These effects strongly depend on the D/A distance and the dyes used, respectively. The obtained data demonstrate that besides dimerization at short D/A distances, an electron transfer process between the acceptor Cy5 and rhodamine donors has to be taken into account. To explain deviations from FRET theory even at larger D/A distances, we suggest that the pi-stack of the DNA double helix mediates electron transfer from the donor to the acceptor, even over distances as long as 35 base pairs. Our data show that FRET experiments at the single molecule level are rather suited to resolve fluorescent subpopulations in heterogeneous mixture, information about strongly quenched subpopulations gets lost.  相似文献   

7.
U P Andley  B A Clark 《Biochemistry》1988,27(2):810-820
Fluorescence lifetime and acrylamide quenching studies on the N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-IAEDANS)-labeled sulfhydryl groups of bovine lens alpha-, beta H-, and gamma-crystallins were carried out to characterize the microenvironment of the sulfhydryls and changes produced by singlet oxygen mediated photooxidation. For the untreated proteins, the lifetimes of the major decay component of the fluorescence-labeled crystallins were 15.2, 14.4, and 13.0 ns, and the quenching rate constant, kq, values were 16.6 x 10(7), 26.9 x 10(7), and 32.7 x 10(7) M-1 s-1 for alpha-, beta H-, and gamma-crystallins, respectively. The results indicate that as the polarity of the sulfhydryl site increased (i.e., its lifetime decreased), its accessibility to collisional quenching by acrylamide also increased. The minor decay component of the fluorescence label was not significantly quenched by acrylamide for all three classes of crystallins. When the proteins were irradiated in the presence of methylene blue, in a system generating singlet oxygen, the kq value for acrylamide quenching of the major decay component of alpha-crystallin decreased to zero, while its lifetime decreased to 6 ns. Neither the lifetime nor the kq of alpha-crystallin recovered completely in the presence of the singlet oxygen quencher sodium azide. Light-induced binding of the photosensitizer methylene blue to the crystallins was observed by absorption spectroscopy. The bound photosensitizer partially quenches the fluorescence lifetime of the N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (AEDANS) label in irradiated alpha-crystallin. Further decrease in the lifetime occurs as a result of the singlet oxygen mediated conformational change. The results suggest that the fluorescence lifetime of the AEDANS is fully quenched in the irradiated alpha-crystallin and there is no further quenching by acrylamide. An increase in the fraction of the minor component of beta H-crystallin which was inaccessible to acrylamide quenching was observed after irradiation. There was no effect of irradiation on the kq for acrylamide quenching of the major component of the decay of AEDANS bound to beta H- or gamma-crystallins. Static quenching was found to contribute significantly to the steady-state quenching plots of the polar sulfhydryl sites of irradiated alpha-crystallin and of untreated and irradiated beta H- and gamma-crystallins, but it had no detectable role in the case of untreated alpha-crystallin. Fluorescence anisotropy of the AEDANS label bound to the crystallins was higher in the irradiated crystallins as compared with the controls.  相似文献   

8.
When 1,N6-ethenoadenosine triphosphate (epsilon-ATP) is free in solution, its fluorescence is collisionally quenched by iodide ion, by methionine, by tryptophan, and by cysteine. None of these quenches the fluorescence of epsilon-ATP bound to G-actin. Thus, the ethenoadenine base is bound in a region of the protein which is inaccessible to collisions with these reagents. Since we have previously shown that the fluorescence of epsilon-ATP is quenched by water, the long lifetime of epsilon-ATP bound to G-actin (36 nsec, vs 27 nsec for epsilon-ATP in water) indicates that the bound nucleotide base is inaccessible to collisional quenching by water molecules.  相似文献   

9.
To expand our understanding of paramagnetic quenching in membranes, the relationship between fluorophore excited-state lifetime (tau), temperature, and the collisional quenching was studied. Specifically, the ability of tempo to quench the steady-state and time-resolved emission from five lipophilic fluorophores (diphenylhexatriene, perylene, phenanthrene, pyrene, and triphenylene) partitioned into egg phosphatidylcholine (EggPC) liposomes was examined. Also, the temperature dependence of spin-labeled androstane to quench the emission (steady-state and time-resolved) from perylene in EggPC liposomes was determined. Unexpectedly, in EggPC liposomes, the apparent quenching efficiency decreased with increasing tau until the effect leveled off above approximately 20 ns. Moreover, in EggPC liposomes, dynamic quenching decreased with increasing temperature. The results suggest that in membranes, paramagnetic quenching is more complex than generally recognized.  相似文献   

10.
Real-time polymerase chain reaction (qPCR) is the cornerstone of DNA analysis, enabling detection and quantification of minute nucleic acid amounts. However, PCR-based analysis is limited, in part, by the presence of inhibitors in the samples. PCR inhibition has been viewed solely as failure to efficiently generate amplicons, that is, amplification inhibition. Humic substances (HS) are well-known inhibitors of PCR amplification. Here we show that HS from environmental samples, specifically humic acid (HA), are very potent detection inhibitors, that is, quench the fluorescence signal of double-stranded DNA (dsDNA) binding dyes. HA quenched the fluorescence of the commonly used qPCR dyes EvaGreen, ResoLight, SYBR Green I, and SYTO 82, generating lowered amplification plots, although amplicon production was unaffected. For EvaGreen, 500 ng of HA quenched nearly all fluorescence, whereas 1000 ng of HA completely inhibited amplification when applying Immolase DNA polymerase with bovine serum albumin (BSA). Fluorescence spectroscopy measurements showed that HA quenching was either static or collisional and indicated that HA bound directly to the dye. Fulvic acid did not act as a qPCR detection inhibitor but inhibited amplification similarly to HA. Hydrolysis probe fluorescence was not quenched by HA. Detection inhibition is an overlooked phenomenon that needs to be considered to allow for development of optimal qPCR assays.  相似文献   

11.
Intramolecular aromatic interactions in aqueous solution often lead to stacked conformation for model organic molecules. This designing principle was used to develop stacked and folded uridine nucleotide analogs that showed highly quenched fluoroscence in aqueous solution by attaching the fluorophore 1-aminonaphthalene-5-sulfonate (AmNS) to the terminal phosphate via a phosphoramidate bond. Severalfold enhancement of fluorescence could be observed by destacking the molecules in organic solvents, such as isopropanol and dimethylsulfoxide or by enzymatic cleavage of the pyrophosphate bond. Stacking and destacking were confirmed by 1-H NMR spectroscopy. The extent of quenching of the uridine derivatives correlated very well with the extent of stacking. Taking 5-H as the monitor, temperature-variable NMR studies demonstrated the presence of a rapid interconversionary equilibrium between the stacked and open forms for uridine-5'-diphosphoro-beta-1-(5-sulfonic acid) naphthylamidate (UDPAmNS) in aqueous solution. DeltaH was calculated to be -2.3 Kcal/mol, with 43-50% of the population in stacked conformation. Fluorescence lifetime for UDPAmNS in water was determined to be 2.5 ns as against 11 ns in dimethyl sulfoxide or 15 ns for the pyrophosphate adduct of AmNS in water. Such a greatly reduced lifetime for UDPAmNS in water suggests collisional interaction between the pyrimidine and thefluorophore moieties to be responsible for quenching. The potential usefulness of such stacked and quenched nucleotide fluorophores as probes for protein-ligand interaction studies has been briefly discussed.  相似文献   

12.
Safranine and the cyanine dye, 3',3'-dipropylthiadicarbocyanine (diSC3-5), were examined as membrane potential probes in cytochrome c oxidase vesicles. The spectra of the vesicle-associated dyes resemble those of the same dyes in organic solvents, indicating that safranine and diSC3-5 probably dissolve in a hydrophobic region of the proteoliposomal membrane. This binding of safranine to proteoliposomes occurs with a dye-membrane dissociation constant in the micromolar range. The binding of safranine and of diSC3-5 to liposomes or proteoliposomes is accompanied by fluorescence enhancement. This enhanced fluorescence is quenched by respiration or by the establishment of a K+ diffusion potential by valinomycin (negative interior). An optimal dye/lipid ratio was required to secure maximum fluorescence quenching of the dyes, whether that quenching was active or passive. Calibrations of both the safranine and the diSC3-5 responses with K+ diffusion potentials were also affected by the dye/lipid ratio. At lower dye/lipid ratios, the calibration curve was linear at higher potentials but deviated from linearity at lower potentials. The converse was true at higher dye/lipid ratios. The non-linearity of the calibration curve at higher potential was attributed to a 'saturation' effect; it may also involve increased permeability of proteoliposomal membrane to protons. Destacking of dye at the lower dye/lipid ratio was probably responsible for the non-linearity of the calibration curves at lower potentials. When all these effects are taken into account, the steady-state value of delta psi generated during maximal proteoliposomal respiration was calculated to be between 140 and 160 mV (interior negative) when measured with either safranine or diSC3-5. We conclude that quantitative estimates of delta psi values can be made using these probes in cytochrome c oxidase reconstituted proteoliposomes provided that appropriate precautions are taken.  相似文献   

13.
The interactions of two phenazine derivatives, one with a neutral chromophore (glycoside) and the other with a cationic one (quaternary salt), with various synthetic single- and double-stranded polynucleotides and natural DNA were studied by fluorescence techniques, conducting measurements of steady-state fluorescence intensity and polarization degree as well as fluorescence lifetime. These dyes show fluorescence quenching upon intercalation into the GC sequences of the double-stranded nucleic acids and an increase in fluorescence emission and lifetime upon incorporation into the AT and AU sequences. GC base pairs in continuous deoxynucleotide sequences were found to be preferred as binding sites for both phenazines, in contrast to AT base pairs. On the contrary, the continuous ribonucleotide GC sequence binds the phenazines more weakly than does the AU sequence. With regard to the interaction of the phenazines with single-stranded polynucleotides, a stacking interaction of the dye chromophores with the nucleic bases was observed. In that case the guanine residue quenches the cationic phenazine fluorescence, while the stacking interaction with the other bases results in an increase in the fluorescence quantum yield. Unlike the cationic dye, the fluorescence of the neutral phenazine was quenched by both purine bases.  相似文献   

14.
Self- or concentration quenching of octadecylrhodamine B (C18-Rh) fluorescence increases linearly in egg phosphatidylcholine (PC) vesicles but exponentially in vesicles composed of egg PC:cholesterol, 1:1, as the probe concentration is raised to 10 mol%. Cholesterol-dependent enhancement of self-quenching also occurs when N-(lissamine-rhodamine-B-sulfonyl)dioleoylphosphatidylethanolamine is substituted for C18-Rh and resembles that in dipalmitoylphosphatidylcholine vesicles below, as opposed to above, the phase transition. These effects are not due to changes in dimer:monomer absorbance. Stern-Volmer plots indicate a dependence of quenching on nonfluorescent dimers both in the presence and absence of cholesterol. Decreases in fluorescence lifetimes with increasing probe concentration parallel decreases in residual fluorescence of C18-Rh with increasing probe concentration in PC and PC + cholesterol membranes, respectively. Decreases in the steady-state polarization of C18-Rh fluorescence as its concentration is raised to 10 mol% indicate energy transfer with emission between probe molecules in PC and to a lesser extent in PC + cholesterol membranes. The calculated R0 for 50% efficiency of energy transfer from excited state probe to monomer was 55-58 A and to dimer was 27 A. Since lateral diffusion of C18-Rh is probably too slow to permit collisional quenching during the lifetime of the probe, even if C18-Rh were concentrated in a separate phase, C18-Rh self-quenching appears to be due mainly to energy transfer without emission to nonfluorescent dimers.  相似文献   

15.
Enzyme I of the bacterial phosphotransferase system is a protein component which undergoes a temperature-dependent monomer/dimer equilibrium. Reaction of sulfhydryl residues with SH-specific reagents inhibits both activity and dimerization. There are four cysteine residues available in each subunit, one of which (Cys 502) is proximate to one of the two tryptophan residues (Trp 498). Previous studies revealed two major lifetimes and spectra, suggesting distinct environments for tryptophan. In this paper, we examine the dynamic quenching of tryptophanyl fluorescence that occurs when an energy transfer acceptor, thio-2-nitrobenzoic acid (TNB), is covalently attached to the sulfhydryl groups. More precisely, we have traced the recovery of nativelike fluorescence lifetime components (and the concomitant loss of "reduced lifetime" amplitudes) that accompanies TNB release. The course of lifetime changes seen when a reducing reagent removes the quencher may be sensitive to a variety of effects, including different SH affinities, different proximities to Trp, changing availability for dimerization, or conformational changes. The prospective value of separating each lifetime component from the mixture is illustrated.  相似文献   

16.
The surprisingly small effect of oxygen on photoelectron transfer in pigmented lipid bilayers is traced to a short lifetime of the excited states. Decreasing the oxygen concentration by greater than 100-fold decreases the half saturating concentration of acceptor by only threefold and has no effect on the maximum photovoltage observed at acceptor saturation. This holds true for both magnesium octaethylporphyrin and chlorophyll with both ferricyanide and methyl viologen as acceptors. Since oxygen quenches excited states at near the encounter limit, the lifetime of reactive state must be short, less than 100 ns. About 100-fold higher concentrations of acceptor are required to quench the fluorescence (in liposomes) than to saturate the photoeffect. Thus the reactive state is most likely the triplet. The short life of the excited state is caused by concentration quenching, i.e., their reaction with ground state molecules. The increase of photovoltage with increasing pigment concentration shows that this quenching in a condensed form of the pigment produces ions that lead to the observed photovoltage by interfacial reaction of the anion with acceptor.  相似文献   

17.
We have used time-resolved fluorescence to study proposed conformational transitions in the Ca-ATPase in skeletal sarcoplasmic reticulum (SR). Resonance energy transfer was used to measure distances between the binding sites of 5-[[2-[(iodoacetyl)amino]ethyl]amino]naphthalene-1-sulfonic acid (IAEDANS) and fluorescein 5-isothiocyanate (FITC) as a function of conditions proposed to affect the enzyme's conformation. When 1.0 +/- 0.15 IAEDANS is bound per Ca-ATPase, most (76 +/- 4%) of the probes have an excited-state lifetime (tau) of 18.6 +/- 0.5 ns, and the remainder have a lifetime of 2.5 +/- 0.9 ns. When FITC is bound to a specific site on each IAEDANS-labeled enzyme, most of the long-lifetime component is quenched into two short-lifetime components, indicating energy transfer that corresponds to two donor-acceptor distances. About one-third of the quenched population has a lifetime tau = 11.1 +/- 2.5 ns, corresponding to a transfer efficiency E = 0.40 +/- 0.07 and a donor-acceptor distance R1 = 52 +/- 3 A. The remaining two-thirds exhibit lifetimes in the range of 1.2-4.2 ns, corresponding to a second distance 31 A less than or equal to R2 less than or equal to 40 A. Addition of Ca2+ (in the micromolar to millimolar range), or vanadate (to produce a phosphoenzyme analogue), had no effect on the donor-acceptor distances. Addition of decavanadate results in the quenching of IAEDANS fluorescence but has no effect on the energy-transfer distance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Heterodimeric dyes are described which bind tightly to double-stranded (dsDNA) with large fluorescence enhancements. These dyes are designed to exploit energy transfer between donor and acceptor chromophores to tune the separation between excitation and emission wavelengths. The dyes described here absorb strongly at the 488 nm argon ion line, but emit at different wavelengths, and can be applied to multiplex detection of various targets. The chromophores in these dyes, a thiazole orange-thiazole blue heterodimer (TOTAB), two different thiazole orange-ethidium heterodimers (TOED1 and TOED2), and a fluorescein-ethidium heterodimer (FED), are in each case linked through polymethyleneamine linkers. The emission maxima of the DNA-bound dyes lie at 662 (TOTAB), 614 (TOED 2), and 610 nm (FED). The dyes showed a > 100 fold enhancement of the acceptor chromophore fluorescence on binding to dsDNA and no sequence selectivity. In comparison with direct 488 nm excitation of the constituent monomeric dyes, in the heterodimers the fluorescence of the acceptor chromophores was greatly enhanced and the emission of the donor chromophores quenched by over 90%. The acceptor emission per DNA-bound dye molecule was constant from 100 DNA bp:dye to 20 bp:dye and decreased sharply at higher dye:DNA ratios.  相似文献   

19.
The quenching of fluorescence (up to 98%) by anti-fluorescein antibodies is well documented in the literature. Here we report a system where, instead of quenching, bifluorophoric molecules are designed to increase in fluorescence upon binding by an anti-fluorescein antibody. Bifluorophoric molecules are made of fluorescein (F) linked to tetramethylrhodamine (T) via varying numbers of methylene units, denoted as F-(CH(2))(n)-T. These F-(CH(2))(n)-T conjugates are almost nonfluorescent when free in solution due to intramolecular dimerization and stacking. Upon binding to an anti-fluorescein antibody, however, up to 110-fold increase in fluorescence was observed from the rhodamine moiety. This increase is believed to result from intramolecular dimer dissociation that dequenches the rhodamine fluorescence. Fluorescein fluorescence, on the other hand, remains quenched due to binding and intramolecular resonance energy transfer. Moreover, the excitation wavelength was at the absorption maxima of fluorescein, giving a Stoke's shift of about 90 nm. This system couples directly molecular recognition with a concurrent increase in fluorescence emission, obviating wash and incubation steps required by most assays. It is an important molecular reporter system for developing homogeneous assays.  相似文献   

20.
Binding of Nile Red to tubulin enhances and blue-shifts fluorescence emission to about 623 nm with a "shoulder" around 665 nm. Binding is reversible and saturable with an apparent Kd of approximately 0.6 microM. Nile Red does not alter tubulin polymerization, and polymerization in 2-(N-morpholino)ethanesulfonic acid (Mes) buffer does not alter the spectrum of the Nile Red-tubulin complex. In contrast, polymerization in glutamate buffer results in a red shift, reduction of intensity, and a decrease in lifetime, suggesting an increase in "polarity" of the binding environment. Lifetimes of 4.5 and 0.6 ns fluorescence in Mes buffer are associated with the 623-nm peak and the 665-nm shoulder, respectively. Indirect excitation spectra for these components are distinct and the 4.5-ns component exhibits tryptophan to Nile Red energy transfer. Acrylamide quenching yields linear Stern-Volmer plots with unchanged lifetimes, indicating static quenching. Apparent quenching constants are wavelength-dependent; global analysis reveals a quenchable component corresponding to the 4.5 ns component and an "unquenchable" component superposing the 0.6-ns spectrum. Analysis of anisotropy decay required an "associative" model which yielded rotational correlation times of greater than 50 ns for the 4.5-ns lifetime and 0.3 ns for the 0.6-ns lifetime. Dilution of tubulin in Mes results in an apparent red shift of emission without lifetime changes, due only to loss of the 623-nm component. These data are reconciled in terms of a model with two binding sites on the tubulin dimer. The more "nonpolar" site is located in a region of subunit-subunit contact which accounts for the fluorescence changes upon dilution; this permits estimation of a subunit dissociation constant of 1 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号