首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Members of the H-NS family of proteins play a relevant role as modulators of gene expression in gram-negative bacteria. Interaction of these proteins with members of the Hha/YmoA family of proteins has been previously reported. It has been hypothesized that the latter proteins are functionally equivalent to the N-terminal domain of H-NS-like proteins. In this report we test this assumption by replacing the N-terminal domain of Escherichia coli H-NS by Hha. It has been possible to obtain a functional protein that can compensate for some of the hns-induced phenotypes. These results highlight the relevance of H-NS-Hha interactions to generate heterooligomeric complexes that modulate gene expression in gram-negative bacteria.  相似文献   

3.
4.
The Hha/YmoA family of proteins is a group of conserved, low-molecular-weight proteins involved in the regulation of gene expression. Studies performed in Escherichia coli, Salmonella sp. and Yersinia sp. highlight the contribution of these proteins in regulating bacterial virulence, horizontal gene transfer and cell physiology. Genes encoding such proteins are located on chromosomes and plasmids in different genera of Gram-negative bacteria. Their mode of action is currently being analysed by studying direct binding of Hha to DNA and as a component of protein complexes with regulatory functions. Recent data on the interaction of Hha with the H-NS family of proteins and structural information suggest a physiological role for such protein complexes in many aspects of gene regulation.  相似文献   

5.
Escherichia coli nucleoid-associated H-NS protein interacts with the Hha protein, a member of a new family of global modulators that also includes the YmoA protein from Yersinia enterocolitica. This interaction has been found to be involved in the regulation of the expression of the toxin alpha-hemolysin. In this study, we further characterize the interaction between H-NS and Hha. We show that the presence of DNA in preparations of copurified His-Hha and H-NS is not directly implicated in the interaction between the proteins. The precise molecular mass of the H-NS protein retained by Hha, obtained by mass spectrometry analysis, does not show any posttranslational modification other than removal of the N-terminal Met residue. We constructed an H-NS-His recombinant protein and found that, as expected, it interacts with Hha. We used a Ni(2+)-nitrilotriacetic acid agarose method for affinity chromatography copurification of proteins to identify the H-NS protein of Y. enterocolitica. We constructed a six-His-YmoA recombinant protein derived from YmoA, the homologue of Hha in Y. enterocolitica, and found that it interacts with Y. enterocolitica H-NS. We also cloned and sequenced the hns gene of this microorganism. In the course of these experiments we found that His-YmoA can also retain H-NS from E. coli. We also found that the hns gene of Y. enterocolitica can complement an hns mutation of E. coli. Finally, we describe for the first time systematic characterization of missense mutant alleles of hha and truncated Hha' proteins, and we report a striking and previously unnoticed similarity of the Hha family of proteins to the oligomerization domain of the H-NS proteins.  相似文献   

6.
7.
The histone-like protein H-NS is a global regulator in Escherichia coli that has been intensively studied in nonpathogenic strains. However, no comprehensive study on the role of H-NS and its paralogue, StpA, in gene expression in pathogenic E. coli has been carried out so far. Here, we monitored the global effects of H-NS and StpA in a uropathogenic E. coli isolate by using DNA arrays. Expression profiling revealed that more than 500 genes were affected by an hns mutation, whereas no effect of StpA alone was observed. An hns stpA double mutant showed a distinct gene expression pattern that differed in large part from that of the hns single mutant. This suggests a direct interaction between the two paralogues and the existence of distinct regulons of H-NS and an H-NS/StpA heteromeric complex. hns mutation resulted in increased expression of alpha-hemolysin, fimbriae, and iron uptake systems as well as genes involved in stress adaptation. Furthermore, several other putative virulence genes were found to be part of the H-NS regulon. Although the lack of H-NS, either alone or in combination with StpA, has a huge impact on gene expression in pathogenic E. coli strains, its effect on virulence is ambiguous. At a high infection dose, hns mutants trigger more sudden lethality due to their increased acute toxicity in murine urinary tract infection and sepsis models. At a lower infectious dose, however, mutants lacking H-NS are attenuated through their impaired growth rate, which can only partially be compensated for by the higher expression of numerous virulence factors.  相似文献   

8.
The nucleoid-associated protein H-NS and its paralogue StpA are global regulators of gene expression and form an integral part of the protein scaffold responsible for DNA condensation in Escherichia coli and Salmonella typhimurium . Although protein oligomerization is a requirement for this function, it is not entirely understood how this is accomplished. We address this by reporting on the self-association of H-NS and its hetero-association with StpA. We identify residues 1–77 of H-NS as being necessary and sufficient for high-order association. A multi-technique-based approach was used to measure the effects of salt concentration on the size distribution of H-NS and the thermal stability of H-NS and StpA dimers. The thermal stability of the StpA homodimer is significantly greater than that of H-NS1−74. Investigation of the hetero-association of H-NS and StpA proteins suggested that the association of H-NS with StpA is more stable than the self-association of either H-NS or StpA with themselves. This provides a clear understanding of the method of oligomerization of these important proteins in effecting DNA condensation and reveals that the different associative properties of H-NS and StpA allow them to perform distinct, yet complementary roles in the bacterial nucleoid.  相似文献   

9.
We have found, using a newly developed genetic method, a protein (named Cnu, for oriC-binding nucleoid-associated) that binds to a specific 26-base-pair sequence (named cnb) in the origin of replication of Escherichia coli, oriC. Cnu is composed of 71 amino acids (8.4 kDa) and shows extensive amino acid identity to a group of proteins belonging to the Hha/YmoA family. Cnu was previously discovered as a protein that, like Hha, complexes with H-NS in vitro. Our in vivo and in vitro assays confirm the results and further suggest that the complex formation with H-NS is involved in Cnu/Hha binding to cnb. Unlike the hns mutants, elimination of either the cnu or hha gene did not disturb the growth rate, origin content, and synchrony of DNA replication initiation of the mutants compared to the wild-type cells. However, the cnu hha double mutant was moderately reduced in origin content. The Cnu/Hha complex with H-NS thus could play a role in optimal activity of oriC.  相似文献   

10.
Proteins of the Hha/YmoA family co-regulate with H-NS the expression of horizontally acquired genes in Enterobacteria. Systematic mutations of conserved acidic residues in Hha have allowed the identification of D48 as an essential residue for H-NS binding and the involvement of E25. Mutations of these residues resulted in deregulation of sensitive genes in vivo. D48 is only partially solvent accessible, yet it defines the functional binding interface between Hha and H-NS confirming that Hha has to undergo a conformational change to bind H-NS. Exposed acidic residues, such as E25, may electrostatically facilitate and direct the approach of Hha to the positively charged region of H-NS enabling the formation of the final complex when D48 becomes accessible by a conformational change of Hha.  相似文献   

11.
The high-resolution solution structure of Yersinia modulating protein YmoA is presented. The protein is all helical with the first three of four helices forming the central core. Structures calculated with only NOE and dihedral restraints exhibit a backbone root-mean-square deviation (rmsd) of 0.77 A. Upon refinement against Halpha-Calpha, HN-N, and Calpha-C' J-modulated residual dipolar couplings, the backbone rmsd improves to 0.22 A. YmoA has a high amino acid sequence identity to and a similar overall fold to Escherichia coli hemolysin expression modulating protein Hha; however, structural differences do occur. YmoA is also found to be structurally similar to the histone-like nucleoid structuring protein H-NS, indicating that YmoA may intercalate into higher-order H-NS suprastructuring by substituting for an H-NS dimer.  相似文献   

12.
13.
Proteins of the Hha/YmoA family co-regulate with H-NS the expression of virulence factors in Enterobacteriaceae. Vibrio cholerae lacks Hha-like proteins and its H-NS (vcH-NS) is unable to bind Hha, in spite of the conservation of a key residue for Hha binding by Escherichia coli H-NS (ecH-NS). Exchange of the residues in position 9 between vcH-NS and ecH-NS strongly reduces Hha binding by ecH-NS and introduces it in vcH-NS. These mutations strongly affect the repression of the hemolysin operon in E. coli and the electrophoretic mobility of complexes formed with a DNA fragment containing its regulatory region.  相似文献   

14.
Nieto JM  Juárez A 《Plasmid》1999,41(2):125-127
The iml determinant of IncM plasmid R446 was described initially as a short fragment of DNA causing (when cloned in multicopy plasmids) insensitivity to pilus-dependent bacteriophage lysis in bacteria harboring coresident IncM plasmids. We have performed a computational analysis of the iml determinant of IncM plasmid R446 and found that a potential polypeptide (Orf4) shows similarity to the H-NS family of nucleoid-associated modulators of gene expression. The predicted protein has a molecular weight of 16.3 kDa and an isoelectric point of 5.50. Orf4 is adjacent and upstream of Orf5, a potential polypeptide related to the Hha/YmoA/RmoA family of proteins which modulate bacterial virulence expression (Hha and YmoA) and R100 transfer (RmoA) in response to environmental conditions.  相似文献   

15.
Bae SH  Liu D  Lim HM  Lee Y  Choi BS 《Biochemistry》2008,47(7):1993-2001
Cnu is a nucleoid protein that has a high degree of sequence homology with Hha/YmoA family proteins, which bind to chromatin and regulate the expression of Escherichia coli virulence genes in response to changes in temperature or ionic strength. Here, we determined its solution structure and dynamic properties and mapped H-NS binding sites. Cnu consists of three alpha helices that are comparable with those of Hha, but it has significant flexibility in the C-terminal region and lacks a short alpha helix present in Hha. Upon increasing ionic strength, the helical structure of Cnu is destabilized, especially at the ends of the helices. The dominant H-NS binding sites, located at helix 3 as in Hha, reveal a common structural platform for H-NS binding. Our results may provide structural and dynamic bases for the similarity and dissimilarity between Cnu and Hha functions.  相似文献   

16.
In Escherichia coli, the H-NS protein plays an important role in the structure and the functioning of bacterial chromosome. A homologous protein has also been identified in several enteric bacteria and in closely related organisms such as Haemophilus influenzae. To get information on their structure and their function, we identified H-NS-like proteins in various microorganisms by different procedures. In silico analysis of their amino acid sequence and/or in vivo experiments provide evidence that more than 20 proteins belong to the same class of regulatory proteins. Moreover, large scale technologies demonstrate that, at least in E. coli, the loss of motility in hns mutants results from a lack of flagellin biosynthesis, due to the in vivo repression of flagellar gene expression. In contrast, several genes involved in adaptation to low pH are strongly induced in a H-NS deficient strain, resulting in an increased resistance to acidic stress. Finally, expression profiling and phenotypic analysis suggest that, unlike H-NS, its paralogous protein StpA does not play any role in these processes.  相似文献   

17.
The Hha/YmoA nucleoid-associated proteins help selectively silence horizontally acquired genetic material, including pathogenicity and antibiotic resistance genes and their maintenance in the absence of selective pressure. Members of the Hha family contribute to gene silencing by binding to the N-terminal dimerization domain of H-NS and modifying its selectivity. Hha-like proteins and the H-NS N-terminal domain are unusually rich in charged residues, and their interaction is mostly electrostatic-driven but, nonetheless, highly selective. The NMR-based structural model of the complex between Hha/YmoA and the H-NS N-terminal dimerization domain reveals that the origin of the selectivity is the formation of a three-protein charge zipper with interdigitated complementary charged residues from Hha and the two units of the H-NS dimer. The free form of YmoA shows collective microsecond-millisecond dynamics that can by measured by NMR relaxation dispersion experiments and shows a linear dependence with the salt concentration. The number of residues sensing the collective dynamics and the population of the minor form increased in the presence of H-NS. Additionally, a single residue mutation in YmoA (D43N) abolished H-NS binding and the dynamics of the apo-form, suggesting the dynamics and binding are functionally related.  相似文献   

18.
19.
The StpA protein is closely related to H-NS, the well-characterised global regulator of gene expression which is a major component of eubacterial chromatin. Despite sharing a very high degree of sequence identify and having biochemical properties in common with H-NS, the physiological function of StpA remains unknown. We show that StpA exhibits similar DNA-binding activities to H-NS. Although both display a strong preference for binding to curved DNA, StpA binds DNA with a four-fold higher affinity than H-NS, with K(d)s of 0.7 microM and 2.8 microM, respectively. It has previously been reported that expression of stpA is derepressed in an hns mutant. We have quantified the amount of StpA protein produced under this condition and find it to be only one-tenth the level of H-NS protein in wild-type cells. Our findings explain why the presence of StpA does not compensate for the lack of H-NS in an hns mutant, and why the characteristic pleiotropic hns mutant phenotype is observed.  相似文献   

20.
A new class of proteins regulating gene expression in enterobacteria   总被引:11,自引:2,他引:9  
YmoA and Hha are highly similar bacterial proteins downregulating gene expression In Yersinia entero-colitlca and Escherichia coli. respectively. The pheno-type of ymoA mutants evokes that of mutants affected in some histone-like proteins. This paper describes complementation of a ymoA mutation in Y. enterocolitica by the hha gene from E. coli. We show that YmoA and Hha are not only very similar proteins but that they are functionally Interchangeable. Genetic experiments indicate that Hha can also stimulate transposition events in vivo. By Southern Biol analysis we detected hha-homologous genes at least in Citrobacter diversus, Shigella flexneri, Shigella dysenteriae, Klebsiella pneumoniae and Salmonella typhimurium. We suggest that both YmoA and Hha belong to a new family of proteins down regulating gene expression in different enterobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号