首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human alpha-ANF[1-28] potentiated erythroid colony formation up to four-fold in cultures containing erythropoietin. Both early and late erythroid precursor cells responded to alpha-ANF[1-28] [0.032 to 1 nM] in a dose dependent fashion. Removal of T lymphocytes and macrophages which have been shown to modulate erythropoiesis did not abolish the stimulatory effect. All major circulatory forms of ANF (alpha-ANF[1-28], alpha-ANF[4-28] and alpha-ANF[5-28]) had potent erythropoietic activity. These results indicate that concentrations of ANF reached during hypoxia stimulate erythroid progenitor cells in the presence of erythropoietin.  相似文献   

2.
Non-adherent bone marrow cells of a bled rabbit were cultured in plasma clot media containing auto-serum, alpha-medium, erythropoietin (Ep) and spleen extract from irradiated rats. The preparations were cloted on a cover glass, fixed and stained by Giemsa or hemoglobin staining method after 3 or 5 days in culture, and the number of erythroid colony was counted as reported elsewhere. In the present study, first, it was elucidated that the optimal numbers of innoculating cells were among 0.6 approximately 1.2 x 10(4) cells per well for the erythroid colony formation. Second, this colony formation was slightly stimulated by the experimental media which contained heat treated extract at 40 degree or 50 degree C for 30 minutes. Contrary this, the extract treated at 70 degree C for 30 minutes lost completely its stimulating activity of the colony formation, suggesting that the effective substances might be protein in the extract. Third, an inhibitory factory might be present in the dialysate of the crude spleen extract, because the number of erythroid colonies decreased in a dose response manner by the dialysate. The residue of inner dialysate, however, certainly contained the colony stimulating factors (s). The crude extract was separated into five fractions (F1 approximately F5) by ammonium sulfate. F1, which was precipitated with 40% ammonium sulfate, had the highest activity for the colony formation. Fetuin also showed appreciable effect on the erythroid colony formation.  相似文献   

3.
The commitment of novel mouse erythroleukemic (MEL) cells (TSA8) to colony-forming units of erythroid (CFU-E) by dimethylsulfoxide (DMSO) was investigated. After exposure to the inducer in liquid culture, the cells were transferred to a semi-solid culture to examine their ability to form erythroid colonies which were dependent on erythropoietin. Exposure to DMSO for 2 days is optimum for CFU-E type colony formation and colonies induced in this manner are equivalent to CFU-E. The induction occurred in a synchronous manner. Partly stained colonies appeared prior to CFU-E formation and are thought to be a result of asymmetric cell division. Appearance of these partly stained colonies suggested that the number of erythropoietin receptors is important in the complete responsiveness to erythropoietin. TSA8 cells constitute a suitable model system in which to analyse the mechanism of commitment in early erythropoiesis.  相似文献   

4.
This study was designed to determine the stage in haemopoietic cell differentiation from multipotential stem cells at which erythropoietin becomes physiologically important. The responses of haemopoietic precursor cells were monitored in the bone marrow of mice under conditions of high (after bleeding) and low (after hypertransfusion) ambient erythropoietin levels. The number of relatively mature erythroid precursors (CFU-E), detected by erythroid colony formation after 2 days of culture, increased three-fold in marrow by the fourth day after bleeding, and decreased three-fold after hypertransfusion. Assessed by sensitivity to killing by a brief exposure to tritiated thymidine (3H-TdR) in vitro, the proliferative activity of CFU-E was high (75% kill) in untreated and bled animals, and was slightly lower (60% kill) after hypertransfusion. The responses of more primitive erythroid progenitors (BFU-E), detected by erythroid colony formation after 10 days in culture, presented a contrasting pattern. After hypertransfusion they increased slightly, while little change was noted until the fourth day after bleeding, when they decreased in the marrow. The same response pattern was observed for the progenitors (CFU-C) detected by granulocyte/macrophage colony formation in culture. The sensitivity of BFU-E to 3H-TdR was normally 30%, and neither increased after bleeding nor decreased after hypertransfusion. However, in regenerating marrow the 3H-TdR sensitivity of BFU-E increased to 63%, and this increase was not affected by hypertransfusion. These results are interpreted as indicating (1) that physiological levels of erythropoietin do not influence the decision by multipotential haemopoietic stem cells to differentiate along the erythroid pathway as opposed to the granulocyte/macrophage pathway; (2) that early erythroid-committed progenitors themselves do not respond to these levels of erythropoietin, but rather are subject to regulation by erythropoietin-independent mechanisms; and (3) that physiological regulation by erythropoietin commences in cells at a stage of maturation intermediate between BFU-E and CFU-E.  相似文献   

5.
Using normal bone marrow as target cells, we assayed the colony-forming efficiency of early and late erythroid progenitor cells and granulocyte-macrophage progenitor cells using several different lots of fetal bovine serum (FBS). There was a marked difference in the ability of these sera to support colony formation, particularly in erythroid colony assays. When adsorbed by activated charcoal, all these sera supported erythroid colony formation more efficiently than before adsorption. There was no significant effect of charcoal adsorption of FBS on granulocyte-macrophage colony formation. Gel-filtration study showed that charcoal adsorption diminished low-molecular-weight fractions by less than 5000 Da. The inhibitory activity of this fraction was heat labile and Pronase sensitive. Concentrated samples obtained from these fractions inhibited erythroid colony formation in a dose-dependent manner. These results suggest that low-molecular-weight inhibitors that are relatively specific to erythropoiesis play a critical role in the lot differences of FBS for erythroid colony formation.  相似文献   

6.
To examine the importance of topological constraints on DNA during erythroid development, we measured the effects of camptothecin and teniposide, two tumoricidal agents which are also specific inhibitors of type I and type II topoisomerases respectively, on the formation of hematopoietic colonies by cultured human bone marrow cells. When added to bone marrow culture, each inhibitor alone impairs the formation of early BFU-E-derived colonies, late CFU-E-derived colonies and mixed hematopoietic (CFU-GEMM-derived) colonies by up to 100%. Inhibition of colony formation is directly related to the time of inhibitor addition and the inhibitor concentration tested. Although either inhibitor alone reduces colony formation by 90%, when added together at a submaximal concentration, camptothecin and teniposide exert a synergistic suppressive effect. Furthermore, addition of topoisomerase inhibitors to culture impairs hemoglobinization of colony erythroblasts in a time-dependent fashion. In contrast to the effects of topoisomerase inhibitors, the antiproliferative agent aphidicolin reduces erythroid colony number and size without altering hemoglobinization of colony erythroblasts. Since neither topoisomerase inhibitor alters the morphology of cultured cells, the capacity of cells to exclude trypan blue or the potential to form erythroid colonies through the interval required for the first progenitor cell division, it is unlikely that camptothecin or teniposide are cytotoxic to hematopoietic cells. Human mononuclear cells enriched in bone marrow lymphocytes and nucleated erythroblasts from both human and mouse sources release DNA into the detergent soluble fraction. Release requires functional topoisomerases and is altered by acute exposure to topoisomerase inhibitors. Our results suggest that topoisomerases are critical not only to proliferation but also to differentiation of human marrow erythroid progenitor cells and stem cells in culture.  相似文献   

7.
Combined action of c-kit and erythropoietin on erythroid progenitor cells.   总被引:1,自引:0,他引:1  
Mutations at the murine dominant-white spotting locus (W) (c-kit) affect various aspects of hematopoiesis. We have made antibodies against c-Kit with the synthetic peptides deduced from the murine c-kit gene and examined the role of c-Kit in erythropoiesis. The antibody inhibited the stromal cell-dependent large colony formation of the erythroid progenitors. In the culture of erythropoietin-responsive erythroid progenitors of the anemia-inducing Friend virus-infected mouse spleen, the antibody inhibited only proliferation, but not differentiation of the progenitor cells. The inhibition was effective only at the early phase (within 6 hours after erythropoietin addition) before the cells start to proliferate induced by erythropoietin. During the early phase, erythropoietin down-regulated c-kit gene expression. These results suggest a mechanism of combined action of c-Kit with erythropoietin on the lineage-restricted erythroid progenitor cells.  相似文献   

8.
Erythroid colonies were generated in response to erythropoietin in plasma clot cultures of sheep and goat bone marrow cells. At low concentration erythropoietin only hemoglobin A (betaA globin) was synthesized in goat cultures, but at high concentrations 50% of the hemoglobin synthesized was hemoglobin C (betaC globin). This effect of erythropoietin on the expression of a specific beta globin gene was manifested only after 72 h in vitro and followed the development of erythroid colonies. Sheep colonies behaved differently from those of goat in that little or no betaC globin synthesis occurred even at high erythropoietin concentration. To investigate this difference, sheep marrow cells were fractionated by unit gravity sedimentation. The erythroid colony-forming cells sedimented more rapidly (3.5-6mm/h) than the hemoglobinized eththroid precursors (1-3.5 mm/h), suggesting that the colonies were formed from an early erythroid precursor, However, the colonies formed from the sheep marrow fractions synthesized only betaA globin even at concentrations of erythropoietin sufficient to stimulate betaC globin synthesis in goat colonies. Morphologically, the goat colonies were larger and more mature than those of the sheep. By 96 h in vitro three-fourths of the goat colonies contained enucleated red cells compared to only 3% of the sheep colonies. Thus, erythropoietin had an equivalent effect in stimulating erythroid colony growth from the marrow of both species although there were both biochemical and morphological differences between the colonies. Hemoglobin switching appeared to require exposure of an early precursor to high erythropoietin concentration, but the results with sheep marrow suggested that the rate of colony growth and cellular maturation might also be important.  相似文献   

9.
The murine erythroleukemia (MEL) cell line, TSA8, becomes responsive to erythropoietin after induction with dimethyl sulfoxide (DMSO). We examined the signalling pathways involved in the commitment of TSA8 cells to become the erythroid progenitor cells responsive to erythropoietin, comparing them with the pathway used in an erythropoietin-induced change of the progenitor cells. Amiloride, an inhibitor of the Na+/H+ antiporter, completely blocked the commitment of TSA8 cells to become responsive to erythropoietin at a concentration that did not affect cell proliferation, while it showed no effect on the differentiation or proliferation of the erythroid progenitor cells derived from TSA8 cells by erythropoietin. Ethyleneglycol-bis (beta-aminoethyl ether) N,N,N',N'-tetra acetic acid (EGTA) inhibited the commitment of TSA8 cells to CFU-E-like cells without affecting colony formation. In contrast, EGTA did not inhibit erythropoietin-induced differentiation of the progenitor cells, but did inhibit their proliferation. These results indicate that erythropoietin uses different signalling pathways from those used in the induction of the commitment of TSA8 cells.  相似文献   

10.
11.
Summary The erythroid-potentiating effects of a protein fraction produced by 20-day rat fetal liver-adhering cells are studied. Partial purification by gel filtration gave an active fraction (apparent molecular weight = 29×103) that significantly increased the erythroid colony counts (CFUe and late BFUe) in cultures of liver cell fractions depleted of adhering cells at both limiting and saturating concentration of recombinant human erythropoietin. The sensitivity of CFUe and BFUe to erythropoietin was increased by the activator.  相似文献   

12.
Detmer K  Walker AN 《Cytokine》2002,17(1):36-42
We examined the effects of bone morphogenetic protein-2 (BMP-2), -3, -4, -5, -6, and -7 on the proliferation and differentiation of bone marrow CD34+ haematopoietic progenitors in semi-solid medium. The BMPs had no effect on haematopoietic colony development when added to medium containing erythropoietin (Epo) or Interleukin-3 plus Epo. Synergistic effects with the haematopoietic cytokines stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were observed. In conjunction with GM-CSF and Epo, BMP-4 increased the number of both erythroid and granulocyte/monocyte colonies formed in semi-solid medium (P<0.01). No other BMP stimulated erythroid colony development under these conditions, while BMP-3, BMP-7 (P<0.01), BMP-5, and BMP-6 (P<0.05) stimulated granulocyte/monocyte colony formation. BMP-7 acted synergistically with stem cell factor to increase granulocyte/monocyte colony formation but not erythroid colony formation. The other BMPs did not affect either erythroid or granulocyte/monocyte colony development under these conditions. These results suggest that individual BMPs form part of the complement of cytokines regulating the development of haematopoietic progenitors, and in particular, point to a role for BMP-4 in the control of definitive, as well as embryonic erythropoiesis.  相似文献   

13.
The anemia of thermal injury is a multifactorial process and includes hemorrhage and hemolysis. Much evidence suggests that a reduced rate of erythropoiesis contributes to this anemia. Prior studies show that this anemia is temporally related to the appearance in burn patients sera of a substance(s) capable of inhibiting erythropoiesis in vitro. Four experiments were done to elucidate the mechanism of action of this inhibitor. In all experiments sera from burn patients previously shown to be inhibitory to erythropoiesis in vitro were studied. In the first, inhibitory sera were exposed to erythropoietin solutions without loss of erythropoietic activity. Second, mouse marrow cells were preincubated with serum without loss of their ability to form erythroid colonies. Third, the inhibitory effect could not be overcome with increasing amounts of erythropoietin. Finally, erythroid colony formation was effected only if the inhibitory serum was present during the first 8 to 12 hr of culture. The data suggest that the erythropoietic inhibitor in these sera acts directly on erythroid stem cells in vitro and not by inactivating or interference with erythropoietin.  相似文献   

14.
Serum erythrotropin (ET) was isolated from fetal bovine serum. Partial sequence analysis of the N-terminal portion of the peptide indicated that the first 20 amino acids were practically identical to those found in human insulin-like growth factor II (IGF II). The effect of IGF II on [3H] thymidine incorporation in cell cultures of fetal bovine liver was similar to the effect of ET. Both factors acted synergistically with erythropoietin but not with platelet derived growth factor. The stimulation of thymidine incorporation by ET and IGF II on cell cultures of fetal liver erythroid cells was at least 15 times higher than their effects on cultures of fetal calf intestine, lung and kidney cells.  相似文献   

15.
Erythroid cells were fractionated by preformed Percoll density gradient from livers of 12.5 day old mouse fetuses. With combination of lysing of mature erythroid cells, the CFU-E (colony forming unit of erythroid) was enriched as high as 30% pure. The mRNA levels of the rt-genes previously cloned as genes expressed in the reticulocytes are estimated in the fractionated erythroid cells. These rt-genes show a drastic change in expression during erythroid differentiation; Their expression was not detectable at the CFU-E cell stage. But it reached to maximum at the polychromatic erythroblast (stage I) and then decreases with maturation. The result suggests that mRNA synthesis of these rt-genes may be induced after the stimulation of erythropoietin.  相似文献   

16.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

17.
Remarkable differences were found between late erythroid progenitors (CFU-e) in cultures of murine yolk sac cells and those of fetal liver cells with respect to frequency, erythropoietin responsiveness and colony size. Cultures of yolk sac on day 11 of gestation showed a CFU-e population of lower frequency, less sensitivity to erythropoietin and smaller colony size than those from cultures of day 14 fetal liver cells. As the proportion of CFU-e to BFU-e was much lower in yolk sac than that in fetal liver, 48-96 h liquid culture experiments were done with these cells to examine the capacity of their precursors to generate a certain amount of CFU-e subpopulations. The cultures of yolk sac cells produced large numbers of CFU-e which formed some large-sized colonies but those of fetal liver cells generated only a small amount of CFU-e.  相似文献   

18.
Preincubation of C57BL adult marrow cells or CBA fetal liver cells with a 250-fold excess concentration of purified GM-CSF failed to reduce the frequency of cells forming eosinophil, megakaryocyte or erythroid colonies in subsequent agar cultures. When excess concentrations of purified GM-CSF were added to agar cultures stimulated by pokeweed mitogen-stimulated spleen conditioned medium (SCM), no reduction was observed in the frequency of eosinophil, megakaryocyte or erythroid colonies. Addition of 4 units of purified erythropoietin (EPO) to cultures of fetal liver or adult marrow cells stimulated by SCM increased the number of erythroid colonies but did not reduce the number of non-erythroid colonies or the non-erythroid content of mixed erythroid colonies. Although neither GM-CSF nor EPO alone was able to stimulate erythroid colony formation in agar cultures of fetal liver cells, small numbers of large erythroid colonies were stimulated to develop in cultures containing both purified regulators. Purified GM-CSF was also able to support the survival in vitro of a small proportion of erythroid colony-forming cells in fetal liver populations cultured initially in the absence of SCM and the survival of some eosinophil and megakaryocyte colony-forming cells in similar cultures of adult marrow cells. The results do not support the hypothesis that GM-CSF and EPO compete for a common pool of uncommitted progenitor cells. On the contrary, the data indicate that GM-CSF und EPO are able to collaborate in stimulating the proliferation of some erythropoietic cells. Furthermore, purified GM-CSF appears to be able to support temporarily the survival and/or initial proliferation of at least some cells forming erythroid, eosinophil and megakaryocyte colonies, even though GM-CSF is unable to stimulate the formation of colonies of these types.  相似文献   

19.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

20.
DiFalco MR  Congote LF 《Cytokine》2002,18(1):51-60
Azidothymidine (AZT)-induced anemia in mice can be reversed by the administration of IGF-IL-3 (fusion protein of insulin-like growth factor II (IGF II) and interleukin 3). Although interleukin 3 (IL-3) and erythropoietin (EPO) are known to act synergistically on hematopoietic cell proliferation in vitro, injection of IGF-IL-3 and EPO in AZT-treated mice resulted in a reduction of red cells and an increase of plasma EPO levels as compared to animals treated with IGF-IL-3 or EPO alone. We tested the hypothesis that the antagonistic effect of IL-3 and EPO on erythroid cells may be mediated by endothelial cells. Bovine liver erythroid cells were cultured on monolayers of human bone marrow endothelial cells previously treated with EPO and IGF-IL-3. There was a significant reduction of thymidine incorporation into both erythroid and endothelial cells in cultures pre-treated with IGF-IL-3 and EPO. Endothelial cell culture supernatants separated by ultrafiltration and ultracentrifugation from cells treated with EPO and IL-3 significantly reduced thymidine incorporation into erythroid cells as compared to identical fractions obtained from the media of cells cultured with EPO alone. These results suggest that endothelial cells treated simultaneously with EPO and IL-3 have a negative effect on erythroid cell production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号