首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dual oscillator basis for mammalian circadian rhythms is suggested by the splitting of activity rhythms into two components in constant light and by the photoperiodic control of pineal melatonin secretion and phase-resetting effects of light. Because splitting and photoperiodism depend on incompatible environmental conditions, however, these literatures have remained distinct. The refinement of a procedure for splitting hamster rhythms in a 24-h light-dark:light-dark cycle has enabled the authors to assess the ability of each of two circadian oscillators to initiate melatonin secretion and to respond to light pulses with behavioral phase shifting and induction of Fos-immunoreactivity in the suprachiasmatic nuclei (SCN). Hamsters exposed to a regimen of afternoon novel wheel running (NWR) split their circadian rhythms into two distinct components, dividing their activity between the latter half of the night and the afternoon dark period previously associated with NWR. Plasma melatonin concentrations were elevated during both activity bouts of split hamsters but were not elevated during the afternoon period in unsplit controls. Light pulses delivered during either the nighttime or afternoon activity bout caused that activity component to phase-delay on subsequent days and induced robust expression of Fos-immunoreactivity in the SCN. Light pulses during intervening periods of locomotor inactivity were ineffective. The authors propose that NWR splits the circadian pacemaker into two distinct oscillatory components separated by approximately 180 degrees, with each expressing a short subjective night.  相似文献   

2.
The split circadian activity rhythm that emerges in hamsters after prolonged exposure to constant light has been a theoretical cornerstone of a multioscillator view of the mammalian circadian pacemaker. The present study demonstrates a novel method for splitting hamster circadian rhythms and entraining them to exotic light:dark cycles. Male Syrian hamsters previously maintained on a 14-h day and 10-h night were exposed to a second 5-h dark phase in the afternoon. The 10-h night was progressively shortened until animals experienced two 5-h dark phases beginning 10 h apart. Most hamsters responded by splitting their activity rhythms into two components associated with the afternoon and nighttime dark phases, respectively. Each activity component was entrained to this light:dark:light:dark cycle. Transfer of split hamsters to constant darkness resulted in rapid joining of the two activity components with the afternoon component associated with onset of the fused rhythm. In constant light, the nighttime component corresponded to activity onset of the fused rhythm, but splitting emerged again at an interval characteristic for this species. The results place constraints on multi-oscillator models of circadian rhythms and offer opportunities to characterize the properties of constituent circadian oscillators and their interactions.  相似文献   

3.
In rodents, the preovulatory luteinizing hormone (LH) surge is timed by a circadian rhythm. We recently reported that a phenobarbital-induced delay of the estrous cycle in Syrian hamsters is associated with an approximately 2-h phase advance in both the circadian locomotor activity rhythm and the timing of the LH surge. The following study tests the hypothesis that a >2-h nonpharmacological phase advance in the circadian pacemaker that delays the estrous cycle by a day will also phase advance the LH surge by approximately 2 h. Activity rhythms were continuously monitored in regularly cycling hamsters using running wheels or infrared detectors for about 10 days prior to jugular cannulation. The next day, on proestrus, hamsters were transferred to the laboratory for 1 of 3 treatments: transfer to a "new cage" (and wheel) from zeitgeber time (ZT) 4 to 8 (with ZT12 defined as time of lights-off), or exposure to a "novel wheel" at ZT5 or ZT1. All animals were then placed in constant dark (DD). Blood samples were obtained just before onset of DD and hourly for the next 6 h, on that day and the next day for determination of plasma LH concentrations. Running activity was monitored in DD for about 10 more days. Transfer to a novel wheel at either ZT5 or ZT1 delayed the LH surge to day 2 in most hamsters, whereas exposure to a new cage did not. Only the delayed LH surges were phase advanced at least 2.5 h on average in all 3 groups. However, wheel-running activity was similarly phase advanced in all 3 groups regardless of the timing of the LH surge; thus, the phase advances in circadian activity rhythms were not associated with the 1-day delay of the LH surge. Interestingly, the number of wheel revolutions was closely associated with the 1-day delay of LH surges following exposure to a novel wheel at either ZT1 or ZT5. These results suggest that the intensity of wheel running (or an associated stimulus) plays an important role in the circadian timing mechanism for the LH surge.  相似文献   

4.
Recent work with exotic 24-h light:dark:light:dark (LDLD) cycles indicates surprising flexibility in the entrainment patterns of Syrian hamsters. Following exposure to an LDLD cycle, hamsters may adopt a form of rhythm splitting in which markers of subjective night (e.g., activity, melatonin) are expressed in each of the twice daily scotophases. This pattern contrasts markedly with that of conventionally entrained hamsters in which markers of subjective night are expressed once daily in only 1 of the 2 dark periods. The "split" entrainment pattern was examined further here in Syrian and Siberian hamsters and in mice exposed to LDLD 7:5:7:5, a condition that reliably induces split activity rhythms in all 3 species. The phase angle of entrainment and activity duration were generally similar comparing the 2 daily activity bouts in each species. The stability of this split entrainment state was assessed by deletions of photophases on individual days, by exposure to skeleton photoperiods, and by transfer to constant darkness. As in Syrian hamsters, the one-time substitution of darkness for one 7-h photophase did not grossly alter activity patterns of Siberian hamsters but acutely disrupted the split rhythms of mice. Skeleton light pulses of progressively shorter duration did not significantly alter split entrainment patterns of either Syrian or Siberian hamsters. Both species continued to exhibit stable entrainment with activity expressed in alternate scotophases of an LD 1:5 cycle presented 4 times daily. In contrast, the split activity rhythms of mice were not maintained under skeleton pulses. In constant darkness, rhythms of Siberian hamsters remained distinctly split for a minimum of 2 cycles. Split entrainment to these novel LDLD and 4-pulse skeleton lighting regimes demonstrates a marked degree of plasticity common to the circadian systems of several rodent species and identifies novel entrainment patterns that may be reliably elicited with simple environmental manipulations. Inter- and intraspecific differences in the stability of split activity rhythms likely reflect differences in coupling interactions between the component circadian oscillators, which, adopting separate phase relations to these novel LD cycles, yield a split entrainment pattern.  相似文献   

5.
Hamsters that showed splitting of their circadian rhythms of wheel-running activity following long-term exposure to constant illumination (LL) were exposed to light-dark (LD) cycles with 2-hr dark segments, and with periods of 24.00, 24.23 or 24.72 hr. For comparison, hamsters showing nonsplit rhythms were also studied. In all cases of split rhythms, at least one of the two split components entrained to the LD cycles. In some animals, the second component continued to free-run until it merged with the entrained component, while in others, the second component also entrained to the LD cycle but maintained a stable phase angle of 6-14.5 hr relative to dark onset. These results were obtained in cases where the period of the LD cycle was shorter than that of the split rhythms and in cases where it was longer, implying that split components can be phase-advanced as well as phase-delayed by 2 hr of darkness. Three hamsters that showed stable entrainment of split rhythms were allowed to free-run in LL. The LD cycles were then reinstated, but instead of overlapping with the first component, as it did before, the dark segment was timed to overlap with the second. The entrainment patterns that ensued were similar to the ones obtained during the first LD exposure, indicating that the two split components respond to darkness in a qualitatively similar fashion. These results are further evidence that the pacemaker system underlying split circadian activity rhythms in hamsters is composed of two mutually coupled populations of oscillators that have similar properties, including a bidirectional phase response curve. Such a dual-oscillator organization may also underlie normal, or nonsplit, activity rhythms, as suggested by Pittendrigh and Daan (1976c), but the data are also compatible with the alternative view that the circadian pacemaker consists of a large number of coupled oscillators, which only dissociate into two separate populations in some animals under conditions of moderate LL intensity.  相似文献   

6.
The suprachiasmatic nucleus (SCN) is the central circadian pacemaker governing the circadian rhythm of locomotor activity in mammals. The mammalian retina also contains circadian oscillators, but their roles are unknown. To test whether the retina influences circadian rhythms of locomotor behavior, the authors compared the activity of bilaterally enucleated hamsters with the activity of intact controls held in constant darkness (DD). Enucleated hamsters showed a broader range of free-running periods (tau) than did intact hamsters held for the same length of time in DD. This effect was independent of the age at enucleation (on postnatal days 1, 7, or 28). The average tau of intact animals kept in DD from days 7 or 28 was significantly longer than that of intact animals kept in DD from day 1 or any of the enucleated groups. This indicates that early exposure to light-dark cycles lengthens the tau and that the eye is required to maintain this effect even in DD. These data suggest that hypothalamic circadian pacemakers may interact continuously with the retina to determine the tau of locomotor activity. Enucleation caused a large decrease in glial fibrillary acidic protein in the SCN but has no (or slight) effects on calbindin, neuropeptide Y, vasopressin, or vasoactive intestinal polypeptide, which suggests that enucleation does not produce major damage to the SCN, an interpretation that is supported by the fact that enucleated animals retain robust circadian rhythmicity. The presence of an intact retina appears to contribute to system-level circadian organization in mammals perhaps as a consequence of interaction between its circadian oscillators and those in the SCN.  相似文献   

7.
While circadian rhythms of locomotion have been reported in the American lobster, Homarus americanus, it is unclear whether heart rate is also modulated on a circadian basis. To address this issue, both heart rate and locomotor activity were continuously monitored in light-dark (LD) cycles and constant darkness (DD). Lobsters in running wheels exhibited significant nocturnal increases in locomotor activity and heart rates during LD, and these measures were significantly correlated. In DD, most lobsters exhibited persistent circadian rhythms of both locomotion and heart rate. When heart rate was monitored in restrained lobsters in LD and DD, most animals also demonstrated clear daily and circadian rhythms in heart rate. Overall, this is the first demonstration of circadian rhythms of heart rate in H. americanus, the expression of which does not appear to be dependent on the expression of locomotor activity.  相似文献   

8.
Long-term recordings of locomotor activity were obtained from intact freshwater crabs, Pseudothelphusa americana in constant darkness (DD), constant light (LL) and different light-dark (LD) protocols. Bimodal rhythms were typically observed in this crab when subjected to DD or LD, with bouts of activity anticipating lights-on and lights-off, respectively. Freerunning circadian rhythms were expressed in both DD and LL for longer than 30 days. In DD, we observed that some animals presented different period lengths for each activity component. During LL, activity was primarily unimodal, however spontaneous splitting of the rhythms were observed in some animals. When activity was recorded under artificial long days, the morning bouts maintained their phase relationship but the evening bouts changed their phase relationship with the Zeitgeber. Our results indicate that, bimodal locomotor activity rhythm in the crab Pseudothelphusa americana is variable among organisms. The characteristics of phase relationship with LD and responses to LL for morning and evening bouts, suggest that, locomotor activity could be driven by multiple oscillators, and that coupling between these oscillators may be regulated by light.  相似文献   

9.
Long-term recordings of locomotor activity were obtained from intact freshwater crabs, Pseudothelphusa americana in constant darkness (DD), constant light (LL) and different light-dark (LD) protocols. Bimodal rhythms were typically observed in this crab when subjected to DD or LD, with bouts of activity anticipating lights-on and lights-off, respectively. Freerunning circadian rhythms were expressed in both DD and LL for longer than 30 days. In DD, we observed that some animals presented different period lengths for each activity component. During LL, activity was primarily unimodal, however spontaneous splitting of the rhythms were observed in some animals. When activity was recorded under artificial long days, the morning bouts maintained their phase relationship but the evening bouts changed their phase relationship with the Zeitgeber. Our results indicate that, bimodal locomotor activity rhythm in the crab Pseudothelphusa americana is variable among organisms. The characteristics of phase relationship with LD and responses to LL for morning and evening bouts, suggest that, locomotor activity could be driven by multiple oscillators, and that coupling between these oscillators may be regulated by light.  相似文献   

10.
While circadian rhythms of locomotion have been reported in the American lobster, Homarus americanus, it is unclear whether heart rate is also modulated on a circadian basis. To address this issue, both heart rate and locomotor activity were continuously monitored in light-dark (LD) cycles and constant darkness (DD). Lobsters in running wheels exhibited significant nocturnal increases in locomotor activity and heart rates during LD, and these measures were significantly correlated. In DD, most lobsters exhibited persistent circadian rhythms of both locomotion and heart rate. When heart rate was monitored in restrained lobsters in LD and DD, most animals also demonstrated clear daily and circadian rhythms in heart rate. Overall, this is the first demonstration of circadian rhythms of heart rate in H. americanus, the expression of which does not appear to be dependent on the expression of locomotor activity.  相似文献   

11.
"Splitting" of circadian activity rhythms in Syrian hamsters maintained in constant light appears to be the consequence of a reorganized SCN, with left and right halves oscillating in antiphase; in split hamsters, high mRNA levels characteristic of day and night are simultaneously expressed on opposite sides of the paired SCN. To visualize the splitting phenomenon at a cellular level, immunohistochemical c-Fos protein expression in the SCN and brains of split hamsters was analyzed. One side of the split SCN exhibited relatively high c-Fos levels, in a pattern resembling that seen in normal, unsplit hamsters during subjective day in constant darkness; the opposite side was labeled only within a central-dorsolateral area of the caudal SCN, in a region that likely coincides with a photo-responsive, glutamate receptor antagonist-insensitive, pERK-expressing cluster of cells previously identified by other laboratories. Outside the SCN, visual inspection revealed an obvious left-right asymmetry of c-Fos expression in the medial preoptic nucleus and subparaventricular zone of split hamsters killed during the inactive phase and in the medial division of the lateral habenula during the active phase (when the hamsters were running in their wheels). Roles for the dorsolateral SCN and the mediolateral habenula in circadian timekeeping are not yet understood.  相似文献   

12.
Experiments were conducted in hamsters to determine whether the phase response curve (PRC) to injections of the short-acting benzodiazepine triazolam is a fixed or a labile property of the circadian clock. The results indicated that (1) both the shape and the amplitude of the PRC to triazolam generated on the first day of transfer from a light-dark cycle (LD 14:10) to constant darkness (DD) (i.e., PRCLD) were different from those of the PRC generated after many days in DD (PRCDD); and (2) the phase-shifting effects of triazolam on the activity rhythms of hamsters transferred from LD 14:10 or 12:12 to DD changed dramatically within the first 8-9 days spent in DD. In an attempt to accelerate the resynchronization of the circadian clock of hamsters subjected to an 8-hr advance in the LD cycle, triazolam was given to the animals at a time selected on the basis of the characteristics of PRCLD. The activity rhythms of five of eight triazolam-treated animals were resynchronized to the new LD cycle within 2-4 days after the shift, whereas those of most of the control animals were resynchronized 21-29 days after the shift. These findings suggest that attempts to use pharmacological or nonpharmacological tools to phase-shift circadian clocks under entrained conditions should take into account information derived from PRCs generated at the time of transition from entrained to free-running conditions.  相似文献   

13.
Summary The circadian rhythm of wheel running behavior was observed to dissociate into two distinct components (i.e. split) within 30 to 110 days in 56% of male hamsters exposed to constant light (Figs. 1–2). Splitting was abolished in all 16 animals that were transferred from constant light (LL) to constant darkness (DD) within 1–4 days of DD, and the components of the re-fused activity rhythm assumed a phase relationship that is characteristic of hamsters maintained in DD (Figs. 3–5). Re-fusion of the split activity rhythm was accompanied by a change in period (); in 14 animals increased while in the other 2 animals decreased after transfer to DD.After 10–30 days in DD, the hamsters were transferred back into LL at various time points throughout the circadian cycle. A few of these animals went through two or three LL to DD to LL transitions. The effect of re-exposure to LL was dependent on the phase relationship between the transition into LL and the activity rhythm. A rapid (i.e. 1–4 days) induction of splitting was observed in 7 of 9 cases when hamsters were transferred into LL 4–5 h after the onset of activity (Fig. 5). In the other 2 animals, the activity pattern was ultradian or aperiodic for 20 to 50 days before eventually coalescing into a split activity pattern. In contrast, transfer of animals (n = 13) from DD to LL at other circadian times did not result in the rapid induction of splitting and the activity rhythm continued to free-run with a single bout of activity (Fig. 5). Importantly, a transfer from DD to LL 4–5 h after the onset of activity did not induce splitting if the hamsters had not shown a split activity rhythm during a previous exposure to LL (n=10; Fig. 6).These studies indicate that transfer of split hamsters from LL to DD results in the rapid re-establishment of the normal phase relationship between the two circadian oscillators which underlie the two components of activity during splitting. In addition, there appears to be a history-dependent effect of splitting which renders the circadian system susceptible to becoming split again. The rapid re-initiation of the split condition upon transfer from DD to LL at only a specific circadian time is discussed in terms of the phase response curve for this species.Abbreviation PRC phase response curve This investigation was supported by NIH grants HD-09885 and HD-12622 from the National Institute of Child Health and Human Development and by a grant from the Whitehall FoundationRecipient of Research Career Development Award K04 HD-00249 from the National Institute of Child Health and Human Development  相似文献   

14.
Ninety male Sprague-Dawley rats were exposed to 1:1-h light-dark (LD1:1) cycles for 50-90 days, and then they were released into constant darkness (DD). During LD1:1 cycles, behavioral rhythms were gradually disintegrated, and circadian rhythms of locomotor activity, drinking, and urine 6-sulfatoxymelatonin excretion were eventually abolished. After release into DD, 44 (49%) rats showed arrhythmic behavior for >10 days. Seven (8%) animals that remained arrhythmic for >50 days in DD were exposed to brief light pulses or 12:12-h light-dark cycles, and then they restored their circadian rhythms. These results indicate that the circadian clock was stopped, at least functionally, by LD1:1 cycles and was restarted by subsequent light stimulation.  相似文献   

15.
An inbred lineage of Ph. sungorus was established at our institute showing some unusual characteristics of the circadian system that appear incompatible with an adequate adaptation to the periodic environment. We identified a hamster for which activity onset was delayed under light-dark conditions (L:D=14:10 h) by about 4 h in relation to the light-dark transition. As the activity offset remained synchronized with the time of light-on, the activity period (alpha) became compressed to 6 h. By means of a special breeding program, the percentage of animals showing such a phenomenon increased, indicating that it has a genetic component. Also, it is possible now to breed a larger number of hamsters to further investigate the rhythm deviations and the underlying mechanisms. Activity rhythms were investigated using passive infrared motion sensors. Whereas some of the hamsters showed a rather stable phase delay of activity onset relative to the onset of darkness, some animals progressively delayed their activity onset up to a critical, minimal length of alpha (3.03+/-0.02 h). Thereafter, the rest-activity rhythm started to free-run with a remarkably long period (tau=25.02 h) or became arrhythmic. Some hamsters showed several consecutive cycles alternating between a free-running rhythm and entrainment, with increasing tau and reducing the phases of temporary entrainment. Finally, these hamsters became arrhythmic. The total amount of activity per day was similar in the wild type and delayed activity onset hamsters. The latter did increase the intensity of activity, thereby compensating for the shorter alpha. The period length in constant darkness was significantly longer in the delayed hamsters compared to wild type animals (24.37+/-0.03 h vs. 24.24+/-0.02 h; p<0.001). However, this difference seems too small to cause the later activity onset. The phase response following a light pulse (100 lux, 15' at CT14 where CT12=activity onset) was similar in delayed and wild type hamsters (-1.66+/-0.12 h and -1.82+/-0.16 h). As access to running wheels is known to influence the circadian pacemaker, particularly to strengthen oscillator coupling, a set of further experiments was conducted. The free-running period was significantly shorter when the hamsters were provided with running wheels (24.25+/-0.04 h and 24.07+/-0.04 h in wild type and delayed hamsters, respectively; p<0.005 and p<0.05). However, the effect on the activity onset was not unequivocal. In many hamsters it was still delayed, whereas in others the unlocking of the wheels led to an expansion of alpha. The described inbred lineage appears to be an excellent model to further investigate the properties and the interaction of the two oscillators underlying the daily activity pattern.  相似文献   

16.
The circadian rhythm of locomotor activity in the freshwater crab, Pseudothelphusa americana , was studied in aquaria using infrared crossing sensors. Individuals with ablated eyestalks were compared with intact individuals in constant darkness (DD) and in light-dark cycles (LD). Our results showed that intact animals in DD displayed bimodal rhythms. In LD conditions the two peaks were associated with lights on and lights off, respectively. A significant difference in the free running periods before and after LD was observed in all intact animals. After eyestalk ablation (ES-X), the circadian rhythm of locomotor activity disappeared immediately, but reappeared several days later. Diurnal activity was seen in some ES-X animals when exposed to LD. Our results indicate that locomotor activity rhythm in P. americana is driven primarily by oscillators located outside the eyestalks, and that extraretinal photoreceptors mediate either entrainment or masking effects.  相似文献   

17.
The circadian rhythm of locomotor activity in the freshwater crab, Pseudothelphusa americana, was studied in aquaria using infrared crossing sensors. Individuals with ablated eyestalks were compared with intact individuals in constant darkness (DD) and in light-dark cycles (LD). Our results showed that intact animals in DD displayed bimodal rhythms. In LD conditions the two peaks were associated with lights on and lights off, respectively. A significant difference in the free running periods before and after LD was observed in all intact animals. After eyestalk ablation (ES-X), the circadian rhythm of locomotor activity disappeared immediately, but reappeared several days later. Diurnal activity was seen in some ES-X animals when exposed to LD. Our results indicate that locomotor activity rhythm in P. americana is driven primarily by oscillators located outside the eyestalks, and that extraretinal photoreceptors mediate either entrainment or masking effects.  相似文献   

18.
The goal of this study was to provide an example of nonsocial and nonphotic entrainment in Syrian hamsters, together with a corresponding phase response curve (PRC). Fourteen male hamsters were given 2-hr bouts of induced activity (mostly wheel running) at 23.83-hr intervals in constant darkness (DD). The activity onsets of 10 hamsters entrained to this manipulation, with no anticipatory activity present. After entrainment, the rhythms resumed free-running from a time 0.66-3.91 hr after the onset of the last bout of induced activity. Postentrainment free-running periods were shorter than pre-entrainment values. The PRC for 2-hr pulses of induced activity in DD revealed phase advances induced in some animals between circadian time (CT) 4 and CT 11 (approximately the last half of the hamsters' rest period), and delays between CT 23 and CT 3 and between CT 17 and CT 20. The CTs for phase advances are compatible with the phase angle differences observed between rhythm and zeitgeber at the end of entrainment. Many features of the results (not all animals entraining, PRC characteristics, lack of observable anticipation to the daily stimuli, phase relationship between zeitgeber and activity rhythms) are similar to those from a previous study on social entrainment in this species (Mrosovsky, 1988). These similarities reinforce the idea that induced activity and social zeitgebers act on activity rhythms via a common mechanism.  相似文献   

19.
Previous anatomical and physiological studies have implicated the lateral habenula, and especially its medial division (LHbM), as a candidate component of the circadian timing system in rodents. We assayed lateral habenula rhythmicity in rodents using c-FOS immunohistochemistry and found a robust rhythm in immunoreactive cell counts in the LHbM, with higher counts during the dark phase of a light-dark (LD) cycle and during subjective night in constant darkness. We have also observed an obvious asymmetry of c-FOS expression in the LHbM of behaviorally "split" hamsters in constant light, but only during their active phase (when they were running in wheels). Locomotor activity rhythms appear to be regulated by the suprachiasmatic nucleus (SCN) via multiple output pathways, one of which might be diffusible while the other might be neural, involving the lateral habenula.  相似文献   

20.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号