首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An oscillating steady state is described of phytoplankton, dominated by Prochlorothrix hollandica and Oscillatoria limnetica, and sestonic detritus in shallow, eutrophic Lake Loosdrecht (The Netherlands). A steady-state model for the coupling of the phytoplankton and detritus is discussed in relation to field and experimental data on phytoplankton growth and decomposition. According to model predictions, the phytoplankton to detritus ratio decreases hyperbolically at increasing phytoplankton growth rate and is independent of a lake's trophic state. The seston in L. Loosdrecht contains more detritus than phytoplankton as will apply to many other lakes. The model provides a basis for estimating the loss rate of the detritus, including decomposition, sedimentation and hydraulic loss. In a shallow lake like L. Loosdrecht detritus will continue to influence the water quality for years.  相似文献   

2.
The organic carbon cycle of a shallow, tundra lake (mean depth 1.45 m) was followed for 5 weeks of the open water period by examining CO2 fluxes through benthic respiration and anaerobic decomposition, photosynthesis of benthic and phytoplankton communities and gas exchange at the air-water interface. Total photosynthesis (as consumption of carbon dioxide) was 37.5 mmole C m–2 d–1, 83% of which was benthic and macrophytic. By direct measurement benthic respiration exceeded benthic photosynthesis by 6.6 mmole C m–2 d–1. The lake lost 1.4 × 106 moles C in two weeks after ice melted by degassing C02, and 6.8 mmole C m–2 d–1 (1.5 × 106 moles) during the remainder of the open water period; 2.2 mmole C m2 d–1 of this was release Of CO2 stored in the sediments by cryoconcentration the previous winter. Anaerobic microbial decomposition was only 4% of the benthic aerobic respiration rate of 38 mmole C m–2 d–1. An annual budget estimate for the lake indicated that 50% of the carbon was produced by the benthic community, 20% by phytoplankton, and 30% was allochthonous material. The relative contribution of allochthonous input was in accordance with measurement of the 15N of sedimented organic matter.  相似文献   

3.
Evidence for the influence of food type and heavy metals on shell growth and fertility is presented for a freshwater population of the snail P. jenkinsi. When fed an excess of lettuce or lamb heart (protein source), growth rates were higher for lettuce. Highest growth rates occurred at a diet of lettuce plus lamb heart. Fertility was favoured by a diet of lamb heart. When fed an excess of lettuce, the EC50 growth values were 16 µg Cd l–1, 13 µg Cu l–1, and 103 µg Zn l–1 in lake water; snail fertility was inhibited at 25 µg Cd l–1 and 30 µg Cu l–1. A diet of lake detritus spiked with Cd or Cu resulted in a decrease of approximately 50% in growth rates, when compared with growth on non-spiked detritus. Spiked detritus lost metals into lake water. Food type positively interacted with metal stress, both for growth rate and fertility. The assessment of inhibitory effects of detritus contaminated either in the field or, notably, by spiking, and serving as food source for deposit feeders is hampered by sampling problems in the field and by redistribution processes of pollutants between particles and water in laboratory-scale experiments.  相似文献   

4.
The natural abundance of stable isotopes (δ13C and δ1315N) was determined for components of the pelagic food web in Loch Ness, a deep oligotrophic lake in northern Scotland, and compared with values from the inflow rivers and the catchment vegetation. Phytoplankton δ13C was low compared to values reported from other lakes, possibly reflecting a high use of 13C-depleted carbon dioxide from respired organic matter before further isotopic fractionation during photosynthesis. Phytoplankton δ13C was appreciably lower than that of dissolved and particulate organic matter (DOM and POM) in the loch. The DOM and POM were evidently overwhelmingly of allochthonous origin and ultimately derived from terrestrial plant detritus. The distinctive δ13C values for phytoplankton and detritus in the loch allowed the use of food sources by grazing crustacean zooplankton to be assessed, and the contributions of phytoplankton carbon and detrital carbon to zooplankton total body carbon appeared to be about equal. Comparison of δ13C and δ15N values for zooplankton and fish allowed assessment of trophic structure in the loch. The very high dependence of the pelagic food web in Loch Ness on allochthonous organic matter inputs from the catchment may be exceptional in a large lake, but has important implications for our understanding of lake ecosystem processes as well as for lake management.  相似文献   

5.
Phytoplankton production was measured in situ in Kainji lake from December 1970 to September 1972 using the oxygen light and dark bottle technique. Seasonal variations in solar radiation, transparency, temperature, and composition of subsurface light were also measured. Oxygen production per unit area varied from 220 to 4500 mg O2 m–2 day–1, the maximum production rate from 95 to 400 mg O2 m–3 h–1. Seasonal mixing of lake water and river water of varying turbidity changed the optical properties of the lake water and consequently affected phytoplankton production. The annual flood pattern was found to be an important factor regulating phytoplankton production in the lake.  相似文献   

6.
Lake Kinneret, Israel, is a warm (13–30°C) monomictic lake that stratifies in April and turns over in December. Between January and June each year, a heavy bloom (up to 250 g wet weight n–2 2) of the dinoflagellate Peridinium gatunense dominates the phytoplankton biomass. In early summer, the bloom collapses, and the sinking Peridinium biomass serves as a trigger for intense sulfate-reduction activity throughout the hypolimnion and within the sediments. The availability of organic matter and sulfate was high shortly after the bloom crash and the beginning of stratification and was lowest in December before overturn. Sulfate-reduction rates at three different sites in the lake were studied. In the sediments, the rates varied seasonally and among stations from 5 to 1600 nmol SO4 –2 reduced cm–3 day–1, with respect to the distance from the Jordan River, depth, organic content, and stratification period. During years of low lake water levels, intense sulfate reduction occurred in the hypolimnion, resulting in anoxia and high concentrations of H2S (>400 m). In years with high water levels, early bloom, and delayed stratification, higher rates of sulfate reduction were recorded in the sediments, probably as a result of a greater fraction of the primary production (organic matter) reaching the bottom. Correspondence to: O. Hadas.  相似文献   

7.
Rates of oxygenic and anoxygenic photosynthesis, chemoautotrophic and heterotrophic bacterial production and protozoan bacterivory were measured in the pelagic zone of the stratified brackish-water lake with the purpose to determine the vertical distribution of these processes and to estimate their significance in the functioning of planktonic community of the lake. In midsummer, total daily primary productivity was about 1.3 g C m–2, of which 72% was produced by the phytoplankton, 24% by the chemoautotrophic bacteria, and only 4% by the phototrophic sulphur bacteria. Thus anoxygenic photosynthesis is a negligible source of organic matter in the lake. The production of heterotrophic bacteria averaged 1.5 g C m–2 d–1 and exceeded the total photosynthesis of phytoplankton and photosynthetic bacteria by a factor of 1.5. The estimated total primary production was too low to sustain the bacterial production. Probably the carbon cycle in the lake is dependent on the input of allochthonous organic matter. As a rule, the maximal rates of primary production and heterotrophic bacterial production were found in the chemocline or at the upper boundary of the chemocline. Heterotrophic flagellates dominated among the protozoan populations and were the major consumers of the bacterioplankton production in the lake. They showed maximal ingestion rates from 2.3 to 2.9 mg C m–3 h–1 at the upper boundary of the chemocline, where they consumed from 50 to 54% of the production of heterotrophic bacteria. Data obtained indicate that in Lake Shira the oxic-anoxic interface is the site of the most intensive production and mineralization of organic matter.  相似文献   

8.
A concentrated colony of Fragilaria crotonensis collected from the surface water of Lake Suwa, which is one of the typical eutrophic lakes in Japan, and organic matter contained in untreated surface water from the same lake were subjected to aerobic decomposition by bacteria in a dark room at a temperature of 20 ± 3 °C. An exponential increase of urea with time was recorded in both of the experiments. The apparent rate constants of urea production were calculated to be 0.083 day−1 for decomposition of F. crotonensis and 0.051 day−1 for decomposition of the organic matter contained in the untreated surface water. This study suggests that urea production by bacterial decomposition of organic matter, including phytoplankton, may be an important source of urea in natural waters under certain conditions.  相似文献   

9.
Batch cultures and continuous flow cultures were used to study the growth rates of zooplankton species from Shira lake, the rotifer Brachionus plicatilis Muller and calanoid copepod Arctodiaptomus salinus Daday, which were fed on phytoplankton and bacterioplankton from the lake. Analyses of the birth and survival rates were used to demonstrate that the lake phytoplankton, consisting mostly of cyanobacteria and diatomaceous algae, is inadequotes for optimal realisation of the reproductive potential of B. plicatilis when compared with the bacterial diet. The study revealed that the kinetic growth characteristics of the two zooplankters were similar: B. plicatilis r max, 0.120 d–1; S 0, 0.253; and K s, 0.114 mg dry mass l–1; and for A. salinus r max, 0.129 d–1; S 0, 0.240; and K s, 0.171 mg dry mass l–1. Fluctuations in natural food concentration reduced the growth rate of both species. Even though the threshold concentration of food for B. plicatilis and A. salinus were quite similar, the copepods were less sensitive to food limitation.  相似文献   

10.
Lake Bogoria, in the Rift Valley of Kenya is an extreme saline lake (conductivity 40–80 mS cm–1, alkalinity 1500 m equ l–1). It is hydrologically more stable than the other, endorheic lakes in Kenya, because it is deep – maximum depth at present just over 10 m in an area of 3000 ha – and so does not have periods when it is dry. It is ecologically simple, with only one species dominating the phytoplankton – the cyanobacterium `spirulina', Arthrospira fusiformis. Its biomass and productivity were very high – biomass between 38 and 365 g l–1 chlorophyll `a' and 3.4–21 × 103 coils ml–1 and net production between 0.24 and 1 gm C m3 h, the latter in a narrow zone of less than a metre. There were no macro-zooplankton in the plankton and the only grazer of A. fusiformis was the lesser flamingo, Phoeniconaias minor,which occurred irregularly in very high concentrations (in excess of 1 × 106). Detritivory in the benthos was effected by a single chironomid species, Paratendipes sp., at a maximum density of 4 × 104 m–2. The mean daily emergence of adult chironomids was estimated to be 1 × 103 m–2, the maximum 3. There was no littoral plant community within the lake but 44 dicotyledonous and 31 monocotyledonous plant species in the drawn-down zone and adjacent to it. A diverse draw-down terrestrial invertebrate fauna, only superficially described here, processed the flamingo feathers and carcasses, with other detritus such as chironomid pupal exuviae and decaying A. fusiformis scum. About 50 bird species depended upon the chironomids, either as they emerged through the water column as flying adults or later on the shoreline as floating pupal exuvia and dead adults. The lake has high conservation value because of three bird species in particular – lesser flamingo, Cape teal and black-necked grebe. The former provides real economic value in a region otherwise impoverished, because of the spectacle of tens of thousands of flamingos set against the landscape of hot springs and fumaroles at the lake edge, which draws 15000 visitors per annum. P. minor has experienced three periods during the past ten years when major mortalities have occurred, the last of which killed 700 birds day–1. This could have involved as many as 200000 birds (about 1/5th of the maximum population at this lake) if mortality was at a constant rate for the nine months it was observed. Causes of mortality have been suggested as avian tuberculosis, poisoning from cyanobacterial toxins or from heavy metal contamination at Lake Nakuru, but it is still not yet clear what contribution each makes to the problem.  相似文献   

11.
A flow-through method was employed to study the algal part of the diet spectrum of the calanoid Arctodiaptomus salinus in the surface layer of the lake and in the phytoplankton biomass maximum zone (10 m deep). Daily consumption rates of this calanoid differed markedly in these layers, being 1 and 11 g ind –1 d–1, respectively. The cyanobacterial taxa, Lyngbya contorta and Microcystis sp., accounted for more than a half of the ration. Nevertheless, the negative Ivlev electivity coefficient indicated that Arctodiaptomus prefers none of these two taxa. The low measured uptakes suggest that the energy expenditure is compensated by other resources, presumably microzooplankton and detritus.  相似文献   

12.
L. Cardona  P. Royo  X. Torras 《Hydrobiologia》2001,462(1-3):233-240
Some mugilid fish are known to enhance small phytoplankton in freshwater macrophyte-free environments due to zooplankton depletion. This suggests that they may have negative effects on natural macrophyte beds of freshwater and oligohaline lagoons due to phytoplantkon enhancement. To test this hypothesis, we compared the ecosystems of control enclosures that contained no fish with those of enclosures stocked with Liza saliens at two different densities. The occurrence of L. saliens at a density of 321±92.42 kg ha–1 reduced cladoceran density, depleted epiphytic chironomid larvae, enhanced mayfly nymphs and cyclopoid copepods and reduced the organic matter content of sediment, all in comparison with control enclosures. At a density of 673±42.04 kg ha–1, L. saliens reduced total zooplankton density, depleted epiphytic and sediment dwelling chironomid larvae and enhanced mayfly nymphs. The organic matter contents of sediment was not affected. These results showed that L. saliens was very effective in reducing zooplankton density even when macrophyte biomass was high. However, these effects do not affect phytoplankton density, probably because zooplankton was dominated by species with low filter-feeding rates and macrophytes depleted nutrients.  相似文献   

13.
The phosphorus cycle in the ecosystem of the shallow, hypertrophic Loosdrecht lakes (The Netherlands) was simulated by means of the dynamic eutrophication model PCLOOS. The model comprises three algal groups, zooplankton, fish, detritus, zoobenthos, sediment detritus and some inorganic phosphorus fractions. All organic compartments are modelled in two elements, carbon and phosphorus. Within the model system, the phosphorus cycle is considered as completely closed. Carbon and phosphorus are described independently, so that the dynamics of the P/C ratios can be modelled. The model has been partly calibrated by a method based on Bayesian statistics combined with a Range Check procedure.Simulations were carried out for Lake Loosdrecht for the periods before and after the restoration measures in 1984, which reduced the external phosphorus loading to the lake from ca. 2 mgP m–2 d–1 to 1 mgP m–2 d–1. The model outcome was largely comparable withthe measured data. Total phosphorus has slowly decreased from an average 130 µgP l–1 to ca. 80 µgP l–1, but chlorophyll-a (ca. 150 µg 1–1, summer-averaged) and seston concentrations (8–15 mgC 1–1) hardly changed since the restoration measures. About two-thirds of the seston consisted of detritus, while the phytoplankton remained dominated by filamentous cyanobacteria. The P/C ratio of the seston decreased from ca. 1.0% to 0.7%, while the P/C ratios of zooplankton, zoobenthos and fish have remained constant and are much higher. The system showed a delayed response to the decreased phosphorus loading until a new equilibrium was reached in ca. five years. Major reasons for the observed resilience of the lake in responding to the load reduction are the high phosphorus assimilation efficiency of the cyanobacteria and the high internal recycling of phosphorus. A further reduction of nutrient loading, perhaps in combination with additional measures like biomanipulation, will be the most fruitful additional restoration measure.  相似文献   

14.
L. Arvola 《Hydrobiologia》1983,101(1-2):105-110
Primary production and phytoplankton in polyhumic lakes showed a very distinct seasonal succession. A vigorous spring maximum produced by Chlamydomonas green algae at the beginning of the growing season and two summer maxima composed mainly of Mallomonas caudata Iwanoff were typical. The annual primary production was ca. 6 g org. C · m–2 in both lakes. The mean epilimnetic biomass was 1.1 in the first lake and 2.2 g · m–2 (ww) in the second one. The maximum phytoplankton biomass, 14 g · m–2, was observed during the vernal peak in May.  相似文献   

15.
Romo  Susana  Miracle  Rosa 《Hydrobiologia》1994,275(1):153-164
A long-term phytoplankton study was carried out in the Albufera of Valencia, a shallow hypertrophic lake (surface area 21 km2, mean depth 1 m, total inorganic nitrogen load 155 g m-2 y-1, total inorganic phosphate load 15 g m-2 y-1) from 1980 to 1988. The lake functions as a reservoir for the surrounding rice cultivation. From 1940's to 1988, its phytoplankton assemblage has been altered from a mesotrophic to a hypertrophic character, as consequence of the increasing pollution. For 1980–88, annual variations in the phytoplankton were less pronounced than seasonal changes. The hypertrophic and morphometric features of the lake favoured the stability of the phytoplankton assemblage and chlorophyll a levels during the study period. Seasonal and horizontal distribution of the total phytoplankton abundance and biomass were highly influenced by the hydrological cycle of the lagoon. Compared with other shallow nutrient rich lakes, the Albufera of Valencia is similar to the shallow hypertrophic lakes of the Netherlands.  相似文献   

16.
Harding  William R. 《Hydrobiologia》1997,344(1-3):87-102
This paper reports on a two-year analysis of the wind climateand its effect on phytoplankton primary production in ashallow (mean depth = 1.9 m), hypertrophic South Africancoastal lake, Zeekoevlei. The lake is subject to continuousmixing of the euphotic zone (Z eu = 0.8 m), andcomplete mixing of the water column to the mean depth on adaily basis. Median annual wind speeds, prevailing fromeither the north or the south, were 6.4 m s–1. There wasan almost total absence of calms, measured as hourly meanwind speeds of <1 m s–1. Notwithstanding the highfrequency of mixing, the lake supports a dense population ofphytoplankton, dominated by Cyanophyte and Chlorophytespecies. Mean concentrations of chlorophyll-a were240 g l–1. The attenuation of photosyntheticallyavailable radiation, PAR, was high, with mean K dvalues of 6.4 m–1 and water transparencies of <0.5 m.Levels of primary productivity, determined using the lightand dark bottle oxygen method, were very high, comparable toor exceeding that of the most productive systems yet studied.Maximum volumetric productivity ranged from 525 to 1524 mg Cm–3 h–1, and was confined to the upper 0.5 m of thewater column. Daily areal productivity, P d,varied between 1.2 and 4.3 g C m–2 d–1, and that ofthe maximum chlorophyll-a specific photosynthetic rate,P B max, between 1.6 and 7.9 mg C (mgChl-a)–1 h–1. Primary production was limited bywater temperature and the attenuation of PAR. The highfrequency of wind-induced mixing resulted in regular mixingof the phytoplankton through the euphotic zone, and reducedthe overall importance of P max at a single layer inthe depth profile. Similarly, the regularity of mixing wasrecognized as a limitation of the incubation of bottle chainsto determine primary production levels.  相似文献   

17.
Suspension feeding by bivalves has been hypothesized to control phytoplankton biomass in shallow aquatic ecosystems. Lake Waccamaw, North Carolina, USA is a shallow lake with a diverse bivalve assemblage and low to moderate phytoplankton biomass levels. Filtration and ingestion rates of two relatively abundant species in the lake, the endemic unionid, Elliptio waccamawensis, and an introduced species, Corbicula fluminea, were measured in experiments using natural phytoplankton for durations of 1 to 6 days. Measured filtration and ingestion rates averaged 1.78 and 1.121 ind.–1 d–1, much too low to control phytoplankton at the observed phytoplankton biomass levels and growth rates. Measured ingestion rates averaged 4.80 and 1.50 µg chlorophyll a ind.–1 d–1, too low to support individuals of either species. The abundance of benthic microalgae in Lake Waccamaw reaches 200 mg chlorophyll a m–2 in the littoral zone and averages almost an order of magnitude higher than depth-integrated phytoplankton chlorophyll a. Total microalgal biomass in the lake is therefore not controlled by suspension feeding by bivalves.  相似文献   

18.
An experimental approach was taken to examine the processes of detritus decomposition in river sediments.Addition of macrophyte detritus (Alternanthera philoxeroides (Mart.) Griseb) to river sediment resultedin an increase in carbon mineralization from a sbasal rate of 200 up to 500 mg C m–2 d–1.Carbon mineralization after addition of oak detritus was only slightly higher than mineralization in sediments thatreceived no addition ( 200 mg C m–2 d–1). Bacterial biomass and production in sediments \s+ alligator-weedwere higher than in sediments + oak or zero-addition. In these experiments the major fate of addedalligatorweed was mineralization. For alligatorweed detritus, microbial metabolism depletes organic carbonrather than leading to increases in food quality. Therefore, a pulse input of alligatorweed detritus would notbe available as a long-term source of organic carbon. Oak detritus was not rapidly decomposed, and sopersists in these sediments for a longer period.  相似文献   

19.
Carbon standing stocks and fluxes were studied in the lagoon of Tikehau atoll (Tuamotu archipelago, French Polynesia), from 1983 to 1988.The average POC concentration (0.7–2000 µm) was 203 mg C m–3. The suspended living carbon (31.6 mg C m–3) was made up of bacteria (53%), phytoplankton < 5 µm (14.2%), phytoplankton > 5 µm (14.2%), nanozooplankton 5–35 µm (5.7%), microzooplankton 35–200 µm (4.7%) and mesozooplankton 200–2000 µm (7.9%). The microphytobenthos biomass was 480 mg C m–2.Suspended detritus (84.4% of the total POC) did not originate from the reef flat but from lagoonal primary productions. Their sedimentation exceeded phytobenthos production.It was estimated that 50% of bacterial biomass was adsorbed on particles. the bacterial biomass dominance was explained by the utilisation of 1) DOC excreted by phytoplankton (44–175 mg C m–2 day –1) and zooplankton (50 mg Cm–2 day–1)2) organic compounds produced by solar-induced photochemical reactions 3) coral mucus.50% of the phytoplankton biomass belongs to the < 5 µm fraction. This production (440 mg C m–2 day–1) exceeded phytobenthos production (250 mg C m–2 day–1) when the whole lagoon was considered.The zooplankton > 35 µm ingested 315 mg C m–2 day–1, made up of phytoplankton, nanozooplankton and detritus. Its production was 132 mg C m–2 day–1.  相似文献   

20.
The effects of light intensity, oxygen concentration, and pH on the rates of photosynthesis and net excretion by metalimnetic phytoplankton populations of Little Crooked Lake, Indiana, were studied. Photosynthetic rates increased from 1.42 to 3.14 mg C·mg–1 chlorophylla·hour–1 within a range of light intensities from 65 to 150E·m–2·sec–1, whereas net excretion remained constant at 0.05 mg C·mg–1 chlorophylla·hour–1. Bacteria assimilated approximately 50% of the carbon released by the phytoplankton under these conditions. Excreted carbon (organic compounds either assimilated by bacteria or dissolved in the lake water) was produced by phytoplankton at rates of 0.02–0.15 mg C·mg–1 chlorophylla·hour–1. These rates were 6%–13% of the photosynthetic rates of the phytoplankton. Both total excretion of carbon and bacterial assimilation of excreted carbon increased at high light intensities whereas net excretion remained fairly constant. Elevated oxygen concentrations in samples incubated at 150E· m–2·sec–1 decreased rates of both photosynthesis and net excretion. The photosynthetic rate increased from 3.0 to 5.0 mg C·mg–1 chlorophylla· hour–1 as the pH was raised from 7.5 to 8.8. Net excretion within this range decreased slightly. Calculation of total primary production using a numerical model showed that whereas 225.8 g C·m–2 was photosynthetically fixed between 12 May and 24 August 1982, a maximum of about 9.3 g C·m–2 was released extracellularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号