首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
2.
The active component in bovine milk on the proliferation of osteoblastic MC3T3-E1 cells was purified and identified. Growth-promoting activity was measured by [(3)H]thymidine incorporation on the cell. The molecular weight of the purified protein was 10 kDa. The amino-terminal sequence of this 10-kDa protein was identical to bovine high mobility group protein (HMG) 1. This 10-kDa protein is suggested to be a basic protein and to have an HMG box, a consensus sequence motif among the HMG family. From these results, we named this protein HMG-like protein. HMG is a ubiquitous nonhistone component of chromatin and considered to be implicated in DNA replication. We found this protein in milk, and it showed a growth-promoting activity. We propose the possibility that HMG-like protein existed in milk and plays an important role for neonate in bone formation by activating osteoblasts.  相似文献   

3.
Osteoporosis is a serious disease caused by decreased bone mass. There is constant matrix remodeling in bones, by which bone formation is performed by osteoblastic cells, whereas bone resorption is accomplished by osteoclast cells. We investigated the effect of a Japanese apricot (Prunus mume SIBE. et ZUCC.) extract on the proliferation and osteoblastic differentiation in pre-osteoblastic MC3T3-E1 cells. An alkaline phosphatase (ALP) activity assay, cell proliferation assay, alizarin red staining and expression analysis of osteoblastic genes were carried out to assess the proliferation and osteoblastic differentiation. The water-soluble fraction of Prunus mume (PWF) increased the ALP activity, cell proliferation and mineralization. The gene expression of osteopontin and bone morphogenetic protein-2, which are markers in the early period of osteoblastic differentiation, were significantly enhanced by the PWF treatment. PWF therefore stimulated the proliferation and osteoblastic differentiation of cells and may have potential to prevent osteoporosis.  相似文献   

4.
Glycitein, as one of the three major isoflavones in soybeans, directly but significantly (about 5%) suppressed the proliferation of MC3T3-E1 and stimulated bone-related protein (alkaline phosphatase (ALP) and osteocalcin (OC)) expression. These results indicate that glycitein suppresses the proliferation of osteoblasts and promotes differentiation from its progenitor.  相似文献   

5.
Osteogenin, a novel bone differentiation factor, was recently purified and characterized. We examined its effect on the proliferation and differentiation of MC3T3-E1 osteoblast-like cells. Cell proliferation was inhibited the first 48 h after addition of osteogenin, and this effect was independent of serum. Osteogenin did not influence the cell morphology. Alkaline phosphatase promptly increased in a dose and time-dependent manner and appeared to be specific. Treatment with TGF-beta 1 resulted in inhibition of alkaline phosphatase activity, and was reversed by osteogenin within 48 h. Cell cultures treated with osteogenin for 72 h after confluence became responsive to parathyroid hormone. Synthesis of collagenous proteins was stimulated by osteogenin. The present results demonstrate a significant influence of osteogenin on the differentiation of osteogenic phenotype in MC3T3-E1 cells in vitro.  相似文献   

6.
Abstract The effects of Bordetella bronchiseptica dermonecrotizing toxin on protein synthesis in an osteoblastic clone, MC3T3-E1 cells, were investigated. The rate of protein synthesis in the serum-starved cells was increased by the toxin after a latent period of about 4 h, and reached 2.5 times that of the control 24 h after addition of toxin. The toxin raised the level of protein synthesis even in actively proliferating cells. The stimulatory effect of the toxin on protein synthesis occurred earlier than other toxic events so far reported, such as the stimulation of DNA synthesis and the inhibition of osteoblastic differentiation, and was apparently dependent on the toxin concentrations over the range 0.05 ng ml−1 to 6.0 ng ml−1. Therefore, the stimulatory effect of the toxin on protein synthesis could be useful in determining the mode of action of the toxin.  相似文献   

7.

Background  

Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts, but their actions with regard to bone metabolism are still unclear. In this study, we investigated the effects of adiponectin on the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells.  相似文献   

8.
We have previously shown that the extracellular calcium-sensing receptor (CaR) is expressed in various bone marrow-derived cell lines and plays an important role in stimulating their proliferation and chemotaxis. It has also been reported that the CaR modulates matrix production and mineralization in chondrogenic cells. However, it remains unclear whether the CaR plays any role in regulating osteoblast differentiation. In this study, we found that mineralization of the mouse osteoblastic MC3T3-E1 cells was increased when the cells were exposed to high calcium (2.8 and 3.8 mM) or a specific CaR activator, NPS-R467 (1 and 3 microM). Next, we stably transfected MC3T3-E1 cells with either a CaR antisense vector (AS clone) or a vector containing the inactivating R185Q variant of the CaR (DN clone) that has previously been shown to exert a dominant negative action. Alkaline phosphatase activities were decreased compared with controls in both the AS and DN clones. However, the levels of type I procollagen and osteopontin mRNA in the AS clone, as detected by Northern blotting, were almost the same as in the controls. On the other hand, the expression of osteocalcin, which is expressed at a later stage of osteoblastic differentiation, was significantly reduced in both the AS and DN clones. Mineralization was also decreased in both clones. In conclusion, this study showed that the abolition of CaR function results in diminishing alkaline phosphatase activity, osteocalcin expression, and mineralization in mouse osteoblastic cells. This suggests that the CaR may be involved in osteoblastic differentiation.  相似文献   

9.
Bone formation involves several tightly regulated gene expression patterns of bone-related proteins. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation, we used Northern blotting, enzymatic assay, and histochemistry. We found that the expression patterns of bone-related proteins were regulated in a temporal manner during the successive developmental stages including proliferation (days 4–10), bone matrix formation/maturation (days 10–16), and mineralization stages (days 16 –30). During the proliferation period (days 4–10), the expression of cell-cycle related genes such as histone H3 and H4, and ribosomal protein S6 was high. During the bone matrix formation/maturation period (days 10–16), type I collagen expression and biosynthesis, fibronectin, TGF-β1 and osteonectin expressions were high and maximal around day 16. During this maturation period, we found that the expression patterns of bone matrix proteins were two types: one is the expression pattern of type I collagen and TGF-β1, which was higher in the maturation period than that in both the proliferation and mineralization periods. The other is the expression pattern of fibronectin and osteonectin, which was higher in the maturation and mineralization periods than in the proliferation period. Alkaline phosphatase activity was high during the early matrix formation/maturation period (day 10) and was followed by a decrease to a level still significantly above the baseline level seen at day 4. During the mineralization period (days 16–30), the number of nodules and the expression of osteocalcin were high. Osteocalcin gene expression was increased up to 28 days. Our results show that the expression patterns of bone-related proteins are temporally regulated during the MC3T3-E1 cell differentiation and their regulations are unique compared with other systems. Thus, this cell line provides a useful in vitro system to study the developmental regulation of bone-related proteins in relation to the different stages during the osteoblast differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

10.
The active component on the proliferation of osteoblastic MC3T3-E1 cells was purified and identified from bovine milk. The growth-promoting activity was measured by [(3)H]thymidine incorporation on the cell. The purified protein showed a molecular size of 17 kDa on SDS-PAGE. Its amino-terminal amino acid sequence was very similar to the internal sequence of bovine high molecular weight (HMW) kininogen, which comprises fragment 1.2. The promotion of proliferation was specific for osteoblastic MC3T3-E1 cells, not for fibroblast BALB/3T3 cells. In blood coagulation, HMW kininogen is considered to be cleaved by a specific enzyme kallikrein. HMW kininogen then releases two peptides, a biologically active peptide bradykinin and fragment 1.2, but the fate of fragment 1.2 is unknown. This milk-derived protein that comprises to fragment 1.2 showed a growth-promoting activity of osteoblasts. We propose the possibility that milk plays an important role in bone formation by supplying the active agent for osteoblasts as well as supplying calcium.  相似文献   

11.
12.
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH-oxidase. In the present study, the effect of apocynin on the function of osteoblastic MC3T3-E1 cells was studied. Apocynin caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and mineralization in the cells (P < 0.05). Antimycin A (AMA), which inhibits complex III of the electron transport system, has been used as a reactive oxygen species (ROS) generator in biological systems. We exposed cultured osteoblastic MC3T3-E1 cells to AMA with or without pretreatment with apocynin. Apocynin significantly (P < 0.05) increased cell survival, calcium deposition, and osteoprotegerin release and decreased the production of ROS and osteoclast differentiation inducing factors such as TNF-α, IL-6, and receptor activator of nuclear factor-kB ligand (RANKL) in the presence of AMA. These results demonstrate that apocynin can protect osteoblasts from mitochondrial dysfunction-induced toxicity and may have positive effects on skeletal structure.  相似文献   

13.
While the role of p75NTR signaling in the regulation of nerve-related cell growth and survival has been well documented, its actions in osteoblasts are poorly understood. In this study, we examined the effects of p75NTR on osteoblast proliferation and differentiation using the MC3T3-E1 pre-osteoblast cell line. Proliferation and osteogenic differentiation were significantly enhanced in p75NTR-overexpressing MC3T3-E1 cells (p75GFP-E1). In addition, expression of osteoblast-specific osteocalcin (OCN), bone sialoprotein (BSP), and osterix mRNA, ALP activity, and mineralization capacity were dramatically enhanced in p75GFP-E1 cells, compared to wild MC3T3-E1 cells (GFP-E1). To determine the binding partner of p75NTR in p75GFP-E1 cells during osteogenic differentiation, we examined the expression of trkA, trkB, and trkC that are known binding partners of p75NTR, as well as NgR. Pharmacological inhibition of trk tyrosine kinase with the K252a inhibitor resulted in marked reduction in the level of ALPase under osteogenic conditions. The deletion of the GDI binding domain in the p75NTR-GFP construct had no effect on mineralization. Taken together, our studies demonstrated that p75NTR signaling through the trk tyrosine kinase pathway affects osteoblast functions by targeting osteoblast proliferation and differentiation.  相似文献   

14.
15.
16.
We investigated the stimulative effect of prostaglandin E2 (PGE2) on an osteoblastic cell line, clone MC3T3-E1, in serum-free medium. PGE2 elevated collagen and non-collagen protein syntheses in a dose-related fashion up to 2 micrograms/ml, the maximal increases being 2- and 3-fold, respectively, over that in the control. Its stimulative effect was evident as early as 12 h. PGE2 slightly increased DNA content, but its effect was less than that on collagen and non-collagen protein syntheses. Moreover, PGE stimulated an increase in prolyl hydroxylase activity with a maximal effect at 1-2 micrograms/ml, the activity being 15-fold over that of the control. These results strongly indicate that PGE2 directly enhances total protein synthesis including that of collagen in osteoblasts in vitro, suggesting its direct effect on bone formation in vivo as well.  相似文献   

17.
Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function. [BMB Reports 2015; 48(10): 583-588]  相似文献   

18.
19.
Effects of human monocyte-conditioned medium on the proliferation of osteoblastic MC3T3-E1 cells were investigated in serum-free cultured condition. Monocyte-conditioned medium significantly stimulated osteoblast proliferation at the concentration between 10 and 30%, compared to that in the absence of monocytes. 17 beta-estradiol directly stimulated osteoblast proliferation at the concentrations of 10(-8) and 10(-10)M. On the contrary, the conditioned medium prepared by monocytes cultured in the presence of 17 beta-estradiol at the concentrations of 10(-8) and 10(-10)M significantly inhibited osteoblast proliferation. Present data indicate that in addition to direct effect on osteoblasts, 17 beta-estradiol affected osteoblast proliferation presumably through modulating the release of several local regulators of bone turnover from monocytes. The effect on osteoblastic activity via monocytes might be linked to the coupling of osteoclast and osteoblast actions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号