首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2-(1-Adamantyl)-2-methyl-pyrrolidines 3 and 4, 2-(1-adamantyl)-2-methyl-azetidines 5 and 6, and 2-(1-adamantyl)-2-methyl-aziridines 7 and 8 were synthesized and tested for their antiviral activity against influenza A. Parent molecules 3, 5, and 7 contain the alpha-methyl-1-adamantan-methanamine 2 pharmacophoric moiety (rimantadine). The ring size effect on anti-influenza A activity was investigated. Pyrrolidine 3 was the most potent anti-influenza virus A compound, 9-fold more potent than rimantadine 2, 27-fold more potent than amantadine 1, and 22-fold more potent than ribavirin. Azetidines 5 and 6 were both markedly active against influenza A H2N2 virus, 10- to 20-fold more potent than amantadine. Aziridine 7 was almost devoid of any activity against H2N2 virus but exhibited borderline activity against H3N2 influenza A strain. Thus, it appears that changing the five-, to four- to a three-membered ring results in a drop of activity against influenza A virus.  相似文献   

2.
A series of 5-[1-(2-haloethyl(or nitro)ethoxy-2-iodoethyl)]-2'-deoxyuridines (3-7) and related uracil analogs (9-10) were prepared using 5-vinyl-2-deoxyuridine (2) and 5-vinyl uracil (8) as starting materials. The regiospecific reaction of 2 and 8 with iodine monochloride and an alcohol provided the target compounds 3-10. These analogs were evaluated in vitro for inhibitory activity against thymidine-kinase (TK) positive and negative strains of herpes simplex virus type-1. The compounds 3-10 were either weak or non-inhibitory to HSV-1 replication. All compounds investigated exhibited low host cell cytotoxicity.  相似文献   

3.
A series of 5-[1-(2-haloethyl(or nitro)ethoxy-2-iodoethyl)]-2′-deoxyuridines (3 - 7) and related uracil analogs (9 - 10) were prepared using 5-vinyl-2′-deoxyuridine (2) and 5-vinyl uracil (8) as starting materials. The regiospecific reaction of 2 and 8 with iodine monochloride and an alcohol provided the target compounds 3 - 10. These analogs were evaluated in vitro for inhibitory activity against thymidine-kinase (TK) positive and negative strains of herpes simplex virus type-1. The compounds 3 - 10 were either weak or non-inhibitory to HSV-1 replication. All compounds investigated exhibited low host cell cytotoxicity.  相似文献   

4.
5.
The antiviral effects of a 20-mer antisense phosphorothioate oligonucleotide, PB2-as, on influenza A virus infection in mice were examined and compared to those of PB2-as encapsulated with several cationic liposomes. Intravenous injection of PB2-as, as a complex with DMRIE-C, a cationic liposome, was most effective for prolonging the mean survival time in days (MSDs) and increasing the survival rates of mice infected with the influenza A virus. In addition, the liposomal PB2-as significantly inhibited viral growth in lung tissues. These results suggest that PB2-as encapsulated with DMRIE-C may be active against the influenza A virus infection through the inhibition of virus replication in the mouse lung.  相似文献   

6.
Mice infected intravenously with vaccinia virus develop characteristic lesions over the entire tail surface. This experimental virus infection presents a highly sensitive and reliable model for evaluating the antivaccinia activity of antiviral compounds. Ara-C (1-beta-D-arabinofuranosylcytosine), ribavirin (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide), IUdR (5-iodo-2'-deoxyuridine) as well as two novel analogs of IUdR, EtUdR (5-ethyl-2'-deoxyuridine), and NCSUdR (5-thiocyanato-2'-deoxyuridine), were found to inhibit the formation of vaccinia tail lesions, when administered intraperitoneally once daily for 7 days starting immediately after virus infection. The order of (decreasing) activity was: ara-C greater than IUdR greater than NCSUdR greater than ribavirin greater than EtUdR. Various drug combinations, involving IUdR + ara-C, NCSUdR + ara-C, NCSUdR + IUdR, NSCUdR + ribavirin, etc., were evaluated but none proved more efficacious than either compound administered alone.  相似文献   

7.
A highly reproducible and robust cell-based high-throughput screening (HTS) assay was adapted for screening of small molecules for antiviral activity against influenza virus strain A/Vietnam/1203/2004 (H5N1). The NIH Molecular Libraries Small Molecule Repository (MLSMR) Molecular Libraries Screening Centers Network (MLSCN) 100,000-compound library was screened at 50 μM. The "hit" rate (>25% inhibition of the viral cytopathic effect) from the single-dose screen was 0.32%. The hits were evaluated for their antiviral activity, cell toxicity, and selectivity in dose-response experiments. The screen yielded 5 active compounds (SI value >3). One compound showed an SI(50) value of greater than 3, 3 compounds had SI values ranging from greater than 14 to 34, and the most active compound displayed an SI value of 94. The active compounds represent 2 different classes of molecules, benzoquinazolinones and thiazoloimidazoles, which have not been previously identified as having antiviral/anti-influenza activity. These molecules were also effective against influenza A/California/04/2009 virus (H1N1) and other H1N1 and H5N1 virus strains in vitro but not H3N2 strains. Real-time qRT-PCR results reveal that these chemotypes significantly reduced M1 RNA levels as compared to the no-drug influenza-infected Madin Darby canine kidney cells.  相似文献   

8.
In vitro antiviral activity of Melaleuca alternifolia essential oil   总被引:1,自引:0,他引:1  
Aims:  To investigate the in vitro antiviral activity of Melaleuca alternifolia essential oil (TTO) and its main components, terpinen-4-ol, α-terpinene, γ-terpinene, p -cymene, terpinolene and α-terpineol.
Methods and Results:  The antiviral activity of tested compounds was evaluated against polio type 1, ECHO 9, Coxsackie B1, adeno type 2, herpes simplex (HSV) type 1 and 2 viruses by 50% plaque reduction assay. The anti-influenza virus assay was based on the inhibition of the virus-induced cytopathogenicity. Results obtained from our screening demonstrated that the TTO and some of its components (the terpinen-4-ol, the terpinolene, the α-terpineol) have an inhibitory effect on influenza A/PR/8 virus subtype H1N1 replication at doses below the cytotoxic dose. The ID50 value of the TTO was found to be 0·0006% (v/v) and was much lower than its CD50 (0·025% v/v). All the compounds were ineffective against polio 1, adeno 2, ECHO 9, Coxsackie B1, HSV-1 and HSV-2. None of the tested compounds showed virucidal activity. Only a slight virucidal effect was observed for TTO (0·125% v/v) against HSV-1 and HSV-2.
Conclusions:  These data show that TTO has an antiviral activity against influenza A/PR/8 virus subtype H1N1 and that antiviral activity has been principally attributed to terpinen-4-ol, the main active component.
Significance and Impact of the Study:  TTO should be a promising drug in the treatment of influenza virus infection.  相似文献   

9.
In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-alpha-D-erythro-pentofuranosyl)cytosine (4alpha), 5-nitro-1-(2-deoxy-beta-D-erythro-pentofuranosyl)cytosine (4beta), 5-amino-1-(2-deoxy-alpha-D-erythro-pentofuranosyl)cytosine (5alpha), 5-nitro-1-(2-deoxy-beta-D-erythro-pentofuranosyl)cytosine (5beta), 5-nitro-1-(2,3-dideoxy-beta-D-ribofuranosyl)uracil (6beta), 5-amino-1-(2,3-dideoxy-alpha,beta-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-alpha,beta-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-beta-D-ribofuranosyl)cytosine (9beta). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

10.
The ethanol extract of Zanthoxylum piperitum (L.) DC. showed in vitro antiviral activity against influenza A virus. Three flavonol glycosides were isolated from the EtOAc fraction of Z. piperitum leaf by means of activity-guided chromatographic separation. Structures of isolated compounds were identified as quercetin 3-O-β-D-galactopyranoside (1), quercetin 3-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-rhamnopyranoside (3) by comparing their spectral data with literature values. The anti-influenza viral activity of isolates was evaluated using a plaque reduction assay against influenza A/NWS/33 (H1N1) virus. The compounds also were subjected to neuraminidase inhibition assay in influenza A/NWS/33 virus. Compounds 1–3 exhibited antiviral activity against an influenza A virus in vitro, and inhibited the neuraminidase activity at relatively high concentrations.  相似文献   

11.
A series of pyrrolidine derivatives were synthesized and evaluated for their ability to inhibit neuraminidase (NA) of influenza A virus (H3N2). All compounds were synthesized in good yields starting from commercially 4-hydroxy-L-proline using a suitable synthetic strategy. These compounds showed potent inhibitory activity against influenza A neuraminidase. Within this series, five compounds, 6e, 9c, 9e, 9f, and 10e, have good potency (IC(50)=1.56-2.71 microM) which are compared to that the NA inhibitor Oseltamivir (IC(50)=1.06 microM), and could be used as lead compoundS in the future.  相似文献   

12.
The nature of the receptor-destroying enzyme (RDE) of influenza C virus has been elucidated by analyzing its effect on the haemagglutination inhibitors rat alpha 1-macroglobulin (RMG) and bovine submandibulary mucin (BSM), respectively. The inhibitory activity of both compounds is abolished by incubation with influenza C virus. After inactivation, RMG and BSM were found to contain reduced amounts of N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) and increased amounts of N-acetylneuraminic acid (Neu5Ac). H.p.l.c. analysis revealed that purified Neu5,9Ac2 is converted to Neu5Ac by incubation with influenza C virus. These results demonstrate that RDE of influenza C virus is neuraminate-O-acetylesterase [N-acyl-9(4)-O-acetylneuraminate O-acetylhydrolase (EC 3.1.1.53)]. The data also indicate that haemagglutination-inhibition (HI) by RMG and BSM and most likely virus attachment to cell surfaces involves binding of influenza C virus to Neu5,9Ac2.  相似文献   

13.
We have reported previously that purine methylenecyclopropane analogs are potent agents against cytomegaloviruses. In an attempt to extend the activity of these compounds, the 2-amino-6-cyclopropylaminopurine analog, QYL-1064, was selected for further study by modifying the purine 6 substituent. A total of 22 analogs were tested against herpes simplex virus types 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), Epstein-Barr virus (EBV), human herpesvirus type 6 (HHV-6) and human herpesvirus type 8 (HHV-8). Ten of the analogs had activity against at least one of the viruses tested. One compound had moderate activity against HSV-1 and six had activity against VZV. All but one compound was active against HCMV with a mean EC50 of 2.1 +/- 0.6 microM, compared with a mean EC50 of 3.9 +/- 0.8 microM for ganciclovir. Of special interest was the fact that eight of the ten compounds were active against both HHV-6A and HHV-6B with mean EC50 values of 6.0 +/- 5.2 mciroM and <2.4 +/- 1.5 microM, respectively. Only two compounds had activity against EBV, whereas all but one compound was active against HHV-8 with a mean EC50 of 3.1 +/- 1.7 microM. These results indicate that members of this series of methylenecyclopropane analogs are highly active against HCMV, HHV-6, and HHV-8 but are less active against HSV, VZV, and EBV.  相似文献   

14.
2-(1-Adamantyl)pyrrolidines 6, 7, 2-(1-adamantyl)piperidines 10, 12a–c, 15a,b and 2-(1-adamantyl)hexahydroazepines 19, 21, 22 were synthesized and tested for their antiviral activity against influenza A, B viruses and the human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2). The synthetic procedure followed for the preparation of the parent piperidine 10 represents a general method for the synthesis of 2-alkyl- or cycloalkyl-substituted piperidine alkaloids. Parent aminoadamantanes 6, 10 and 19 contain the 1-aminoethyl pharmacophore group of rimantadine drug 2, extended into a saturated nitrogen heterocycle: pyrrolidine, piperidine and hexahydroazepine, respectively. The ring size effect in anti-influenza A activity was investigated. Rimantadine analogues 6 and 10 were, respectively, 6- and 4-fold more active than the drug Rimantadine 2, whereas the hexahydroazepine derivative 19 was inactive. Thus, enlargement from a 5-(pyrrolidine)- or 6-(piperidine)- to a 7-(hexahydroazepine)- membered heterocyclic ring dramatically reduced the anti-influenza virus A activity. Substitution of piperidine 10 with a dialkyaminoethyl group led to the active compounds 15a and 15b: compound 15a was active against influenza A virus whereas both 15a and 15b were active against HIV-1.  相似文献   

15.
A series of 2-alkoxyimino-N-(2-isoxazolin-3-ylmethyl)acetamides and related compounds were synthesized and their antiviral activities against human influenza A virus were assessed. Studies of the structure-activity relationships revealed the strongest antiviral activity when position-5 of the isoxazoline ring was substituted with a tert-butyl group. When the alkoxyimino moiety was substituted with a methyl, ethyl, isopropyl or allyl group, good antiviral activity was obtained. Among the geometrical isomers at the oxime moiety, the E-isomers were more active than the Z-isomers. Among the compounds examined, (E)-2-allyloxyimino-2-cyano-N-(5-tert-butyl-2-isoxazolin-3-ylmethyl)acetamide (1j) was the most active inhibitor with an EC(50) of 3 microg/mL in vitro.  相似文献   

16.
17.
The antiviral activity of 4-hydroxy-hexahydro-2H-chromenes and 4-fluorine-hexahydro-2H-chromenes with an aromatic substituent, synthesized from monoterpene (−)-verbenone, was studied for the first time. Five of 11 (45 per cent) of 4-hydroxy-hexahydro-2H-chromene-type compounds have been found to exhibit antiviral activity against influenza A virus of subtype H1N1pdm09. Although a portion of active compounds among 4-fluorine-containing series was fewer, just compound 5i that contains a fluorine substituent exhibited more potent anti-influenza activity along with low cytotoxicity. Thus two new promising types of antiviral compounds were identified.  相似文献   

18.
19.
We have investigated the ability of antisense phosphorothioate oligonucleotides to enhance the survival of mice infected with influenza A virus. The oligonucleotides were complementary to sequences surrounding the translation initiation codons of the viral PB2 or PA genes (PB2-as or PA-as, respectively) of the influenza A virus RNA polymerases. Intravenous administration of PB2-as in a complex with a cationic liposome, Tfx-10, significantly prolonged the mean survival time in days and increased overall survival rates of mice infected with the influenza A virus. Liposomally encapsulated PB2-as inhibited viral growth in lung tissues and reduced pulmonary consolidations. Liposomally encapsulated PB2-as could be an effective therapeutic agent against influenza A virus.  相似文献   

20.
A series of aminoalkyl rupestonates were designed and synthesized by reacting rupestonic acid with 1,ω-dibromoalkanes, followed by amination. All of the new compounds were bioassayed in vitro to determine their activities against influenza A (H3N2, H1N1) and B viruses. The results showed that compounds 5a-5g, which each contain a 1H-1,2,4-triazolyl moiety, were found to be the most potent set of compounds. Compound 5g was demonstrated to possess the highest inhibitory activity against influenza H3N2 and H1N1, with IC(50) values of 0.97 and 0.42 μM, respectively. Our results also indicated that compounds 2g, 3g, 4g and 5g, which contain ten-CH(2)-unit spacers between the rupestonic acid and amino functional groups, were the most potent inhibitors of influenza H1N1 among the synthesized compounds. Unfortunately, most of the synthesized compounds did not show an obvious activity against influenza B; the only exceptions were compounds 5d and 5f, which had IC(50) values of 17.3 and 3.2 μM, respectively. Compounds 4g and 5g were potent inhibitors of influenza H1N1, and they might be potentially developed as new lead anti-influenza virus compounds. Further studies of the mechanism of action are underway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号