首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance.  相似文献   

3.

Background

Unlike Drosophila but similar to other arthropod and vertebrate embryos, the flour beetle Tribolium castaneum develops everted limb buds during embryogenesis. However, the molecular processes directing the evagination of epithelia are only poorly understood.

Results

Here we show that the newly discovered genes Tc-flipflop1 and Tc-flipflop2 are involved in regulating the directional budding of appendages. RNAi-knockdown of Tc-flipflop results in a variety of phenotypic traits. Most prominently, embryonic limb buds frequently grow inwards rather than out, leading to the development of inverted appendages inside the larval body. Moreover, affected embryos display dorsal closure defects. The Tc-flipflop genes are evolutionarily non-conserved, and their molecular function is not evident. We further found that Tc-RhoGEF2, a highly-conserved gene known to be involved in actomyosin-dependent cell movement and cell shape changes, shows a Tc-flipflop-like RNAi-phenotype.

Conclusions

The similarity of the inverted appendage phenotype in both the flipflop- and the RhoGEF2 RNAi gene knockdown led us to conclude that the Tc-flipflop orphan genes act in a Rho-dependent pathway that is essential for the early morphogenesis of polarised epithelial movements. Our work describes one of the few examples of an orphan gene playing a crucial role in an important developmental process.
  相似文献   

4.
5.
6.
7.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

8.
9.
10.
Nymphs and larvae belonging to Ixodes spp. were collected from a red fox in Turkey. The ticks were identified morphologically and molecularly (16S rDNA PCR and phylogenetic analysis) as I. kaiseri. Sequence and phylogenetic analyses show that our I. kaiseri isolate is very similar to I. kaiseri isolates collected from Germany, Serbia, Romania, and Hungary. Therefore, the existence of I. kaiseri has been demonstrated for the first time in Turkey. More studies relating to the regional distribution and vectorial competence of I. kaiseri are needed.  相似文献   

11.
Tuber huidongense and T. liyuanum are common commercial white truffles in China that belong to the Rufum and Puberulum groups of the genus Tuber, respectively. Their mycorrhizae were successfully synthesized with two native trees—Castanea mollissima and Pinus armandii—under greenhouse conditions. The identities of the mycorrhizae were confirmed through internal transcribed spacer (ITS) sequence analyses, and their morphological characteristics were described. All of the obtained mycorrhizae have an interlocking pseudoparenchymatous mantle, which is a typical feature of truffle mycorrhizae. The mycorrhizae of T. huidongense on the two trees have hyaline branched emanating hyphae, similar to the documented mycorrhizae of the Rufum group. The unramified, spiky, and hyaline cystidia on the mycorrhizae of T. liyuanum with both C. mollissima and P. armandii further confirmed that this characteristic is constant for the mycorrhizae of the Puberulum group. The successful mycorrhizal syntheses on the two nut-producing trees will be of economic importance in the cultivation of the two truffles.  相似文献   

12.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

13.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

14.

Objectives

To evaluate transient expression of RNA interference (RNAi) effectors in Nicotiana benthamiana plants by using recombinant virus vectors and also oral delivery of the effectors for silencing of Mythimna separata endogenous gene expression.

Results

Mythimna separata is a serious pest of corn production in China. To evaluate RNAi approaches to target specific RNAs in M. separate, we cloned fragments of the M. separata chitinase sequences into a virus vector in order to produce RNAi effectors during virus infection and replication in plants. When the infected plants were fed to M. separata, expression levels of target MseChi1 and MseChi2 genes were down-regulated by 76 and 45 %, respectively, and sequence-specific siRNAs were detected in recipient insects. RNAi-based silencing of chitinase genes also led to body weight decreases by 43 %.

Conclusion

Our research demonstrates target mRNA knockdown and suggests a promising application for controlling of M. separata by in planta expression of RNAi effectors using a recombinant plant virus.
  相似文献   

15.
16.
Trichoderma species are widespread phytostimulant fungi that act through biocontrol of root pathogens, modulation of root architecture, and improving plant adaptation to biotic and abiotic stress. With the major challenge to better understand the contribution of Trichoderma symbionts to plant adaptation to climate changes and confer stress tolerance, we investigated the potential of Trichoderma virens and Trichoderma atroviride in modulating stomatal aperture and plant transpiration. Arabidopsis wild-type (WT) seedlings and ABA-insensitive mutants, abi1-1 and abi2-1, were co-cultivated with either T. virens or T. atroviride, and stomatal aperture and water loss were determined in leaves. Arabidopsis WT seedlings inoculated with these fungal species showed both decreased stomatal aperture and reduced water loss when compared with uninoculated seedlings. This effect was absent in abi1-1 and abi2-1 mutants. T. virens and T. atroviride induced the abscisic acid (ABA) inducible marker abi4:uidA and produced ABA under standard or saline growth conditions. These results show a novel facet of Trichoderma-produced metabolites in stomatic aperture and water-use efficiency of plants.  相似文献   

17.
18.
19.
The methylerythritol phosphate (MEP) pathway for the production of isoprenoids is recently discovered. The current study aimed to identify MEP pathway disorder-related molecular mechanisms and potential genes in Arabidopsis thaliana. Microarray data (GSE61675) obtained from ceh1 mutant plants and corresponding parental lines were retrieved from Gene Expression Omnibus (GEO) database and were applied for differentially expressed genes (DEGs) screening. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed. Protein-protein interaction (PPI) network was then constructed and displayed by Cytoscape software. Total 762 DEGs including 620 up-regulated and 142 down-regulated genes were screened. In addition, a great many of DEGs were mainly involved in biosynthesis and metabolism-related pathways, such as stilbenoid, diarylheptanoid, and gingerol biosynthesis, and biosynthesis of terpenoids and steroids. Moreover, a PPI network contained 90 down-regulated genes and 497 up-regulated genes were obtained. Up-regulated DEGs including glutaredoxin (GRX480, cytochrome BC1 synthase (BCS1, syntaxin of plants 121 (SYP121) and A. thaliana MAP kinase 11 (ATMPK11) with higher degree in this network were hub nodes. Pathways including stilbenoid, diarylheptanoid, and gingerol biosynthesis obtained in our study were consistent with previous studies. Importantly, GRX480, BCS1 and ATMPK11 could have close interactions with the MEP pathway and may play important roles in the biosynthesis of isoprenoids.  相似文献   

20.
The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl β-d-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号