首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Color vision requires the expression of opsin photopigments with different wavelength sensitivities in retinal cone photoreceptors. The basic color visual system of mammals is dichromatic, involving differential expression in the cone population of two opsins with sensitivity to short (S, blue) or medium (M, green) wavelengths. However, little is known of the factors that directly activate these opsin genes and thereby contribute to the S or M opsin identity of the cone. We report that the orphan nuclear receptor RORbeta (retinoid-related orphan receptor beta) activates the S opsin gene (Opn1sw) through binding sites upstream of the gene. RORbeta lacks a known physiological ligand and activates the Opn1sw promoter modestly alone but strongly in synergy with the retinal cone-rod homeobox factor (CRX), suggesting a cooperative means of enhancing RORbeta activity. Comparison of wild-type and mutant lacZ reporter transgenes showed that the RORbeta-binding sites in Opn1sw are required for expression in mouse retina. RORbeta-deficient mice fail to induce S opsin appropriately during postnatal cone development. Photoreceptors in these mice also lack outer segments, indicating additional functions for RORbeta in photoreceptor morphological maturation. The results identify Opn1sw as a target gene for RORbeta and suggest a key role for RORbeta in regulating opsin expression in the color visual system.  相似文献   

2.
3.
4.
The mediator neuroprotectin D1 (NPD1) is an enzymatic derivative of the omega-3 essential fatty acid docosahexaenoic acid. NPD1 stereoselectively and specifically binds to human retinal pigment epithelium (RPE) cells and neutrophils. In turn, this lipid mediator induces dephosphorylation of Bcl-xL in a PP2A-dependent manner and induces PI3K/Akt and mTOR/p70S6K pathways leading to RPE cell survival during oxidative stress-induced apoptosis. As a proof of principle of its systemic in vivo bioactivity, NPD1 attenuates laser-induced choroidal neovascularization in mice. Using human neural cells transfected with amyloid precursor protein (APP)sw (Swedish double mutation APP695sw, K595N, M596L), NPD1 was shown to regulate secretase-mediated production of Aβ peptide, downregulates pro-inflammatory gene expression, and promotes cell survival. In human neural cells overexpressing beta-amyloid precursor protein (βAPP), the lipid mediator suppressed Aβ42 shedding by downregulating β-secretase (BACE1) while activating the α-secretase (ADAM10), thus shifting the βAPP cleavage from the noxious amyloidogenic pathway into a non-amyloidogenic, neurotrophic pathway. Furthermore, downregulation of Aβ42 peptide release by NPD1 may be dependent upon PPARγ activation. In conclusion, NPD1 exhibits anti-inflammatory, anti-amyloidogenic, and anti-apoptotic bioactivities in human neural cells in part via PPARγ signaling and through the targeting of α- and β-secretase systems.  相似文献   

5.
To further explore the mechanism of selective binding of the representative γ-aminobutyric acid receptors (GABARs) noncompetitive antagonist (NCA) fipronil to insect over mammalian GABARs, three-dimensional models of human α1β2γ2 and house fly β3 GABAR were generated by homology modeling, using the cryo-electron microscopy structure of the nicotinic acetylcholine receptor (nAChR) of Torpedo marmorata as a template. Fipronil was docked into the putative binding site of the human α1β2γ2 and house fly β3 receptors by Surflex-docking, and the calculated docking energies are in agreement with experimental results. The GABA receptor antagonist fipronil exhibited higher potency with house fly β3 GABAR than with human α1β2γ2 GABAR. Furthermore, analyses of Surflex-docking suggest that the H-bond interaction of fipronil with Ala2 and Thr6 in the second transmembrane segment (TM2) of these GABARs plays a relatively important role in ligand selective binding. The different subunit assemblies of human α1β2γ2 and house fly β3 GABARs may result in differential selectivity for fipronil.  相似文献   

6.
7.
GABAA receptors are pentameric ligand-gated ion channels that are major mediators of fast inhibitory neurotransmission. Clinically relevant GABAA receptor subtypes are assembled from α5(1-3, 5), β1-3 and the γ2 subunit. They exhibit a stoichiometry of two α, two β and one γ subunit, with two GABA binding sites located at the α/β and one benzodiazepine binding site located at the α/γ subunit interface. Introduction of the H105R point mutation into the α5 subunit, to render α5 subunit-containing receptors insensitive to the clinically important benzodiazepine site agonist diazepam, unexpectedly resulted in a reduced level of α5 subunit protein in α5(H105R) mice. In this study, we show that the α5(H105R) mutation did not affect cell surface expression and targeting of the receptors or their assembly into macromolecular receptor complexes but resulted in a severe reduction of α5-selective ligand binding. Immunoprecipitation studies suggest that the diminished α5-selective binding is presumably due to a repositioning of the α5(H105R) subunit in GABAA receptor complexes containing two different α subunits. These findings imply an important role of histidine 105 in determining the position of the α5 subunit within the receptor complex by determining the affinity for assembly with the γ2 subunit.  相似文献   

8.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   

9.
10.
The vertebrate retina is known to contain three classes of photoreceptor cells: cones and rods responsible for vision, and intrinsically photoresponsive retinal ganglion cells (RGCs) involved in diverse non-visual functions such as photic entrainment of daily rhythms and pupillary light responses. In this paper we investigated the potential intrinsic photoresponsiveness of the rat RGC line, RGC-5, by testing for the presence of visual and non-visual opsins and assessing expression of the immediate-early gene protein c-Fos and changes in intracellular Ca(2+) mobilization in response to brief light pulses. Cultured RGC-5 cells express a number of photopigment mRNAs such as retinal G protein coupled receptor (RGR), encephalopsin/panopsin (Opn3), neuropsin (Opn5) and cone opsin (Opn1mw) but not melanopsin (Opn4) or rhodopsin. Opn5 immunoreactivity was observed in RGC-5 cells and in the inner retina of rat, mainly localized in the ganglion cell layer (GCL). Furthermore, white light pulses of different intensities and durations elicited changes both in intracellular Ca(2+) levels and in the induction of c-Fos protein in RGC-5 cell cultures. The results demonstrate that RGC-5 cells expressing diverse putative functional photopigments display intrinsic photosensitivity which accounts for the photic induction of c-Fos protein and changes in intracellular Ca(2+) mobilization. The presence of Opn5 in the GCL of the rat retina suggests the existence of a novel type of photoreceptor cell.  相似文献   

11.
The mechanism by which receptors activate heterotrimeric G proteins was examined by scanning mutagenesis of the Saccharomyces cerevisiae pheromone-responsive Gα protein (Gpa1). The juxtaposition of high-resolution structures for rhodopsin and its cognate G protein transducin predicted that at least six regions of Gα are in close proximity to the receptor. Mutagenesis was targeted to residues in these domains in Gpa1, which included four loop regions (β2–β3, α2–β4, α3–β5, and α4–β6) as well as the N and C termini. The mutants displayed a range of phenotypes from nonsignaling to constitutive activation of the pheromone pathway. The constitutive activity of some mutants could be explained by decreased production of Gpa1, which permits unregulated signaling by Gβγ. However, the constitutive activity caused by the F344C and E335C mutations in the α2–β4 loop and F378C in the α3–β5 loop was not due to decreased protein levels, and was apparently due to defects in sequestering Gβγ. The strongest loss of the function mutant, which was not detectably induced by a pheromone, was caused by a K314C substitution in the β2–β3 loop. Several other mutations caused weak signaling phenotypes. Altogether, these results suggest that residues in different interface regions of Gα contribute to activation of signaling.  相似文献   

12.
EF-1a binds aminoacyl-tRNA to the ribosome with the hydrolysis of GTP; the complex facilitates the exchange of GDP for GTP to initiate another round of elongation. To examine the subunit structure of EF-1 and phosphorylation by protein kinase CKII, recombinant , , and subunits from rabbit were expressed in E. coli and the subunits were reconstituted into partial and complete complexes and analyzed by gel filtration. To determine the availability of the and subunits for phosphorylation by CKII, the subunits and the reconstituted complexes were examined as substrates for CKII. Formation of the nucleotide exchange complex increased the rate of phosphorylation of the subunit and reduced the Km, while addition of to or the complex inhibited phosphorylation by CKII. However, a had little effect on phosphorylation of . Thus, the and subunits in EF-1 were differentially phosphorylated by CKII, in that phosphorylation of was altered by association with other subunits, while the site on was always available for phosphorylation by CKII. From the availability of the subunits for phosphorylation by CKII and the composition of the reconstituted partial and complete complexes, a model for the subunit structure of EF-1 consisting of (22)2 is proposed and discussed.  相似文献   

13.
Abstract: We report the isolation, by RT-PCR, of partial cDNAs encoding the rat peroxisome proliferator-activated receptor (PPAR) isoforms PPARα, PPARβ, and PPARγ and the rat retinoid X receptor (RXR) isoforms RXRα, RXRβ, and RXRγ. These cDNAs were used to generate antisense RNA probes to permit analysis, by the highly sensitive and discriminatory RNase protection assay, of the corresponding mRNAs in rat brain regions during development. PPARα, PPARβ, RXRα, and RXRβ mRNAs are ubiquitously present in different brain regions during development, PPARγ mRNA is essentially undetectable, and RXRγ mRNA is principally localised to cortex. We demonstrate, for the first time, the presence of PPAR and RXR mRNAs in primary cultures of neonatal meningeal fibroblasts, cerebellar granule neurons (CGNs), and cortical and cerebellar astrocytes and in primary cultures of adult cortical astrocytes. PPARα, PPARβ, RXRα, and RXRβ mRNAs are present in all cell types, albeit that PPARα and RXRα mRNAs are at levels near the limit of detection in CGNs. PPARγ mRNA is expressed at low levels in most cell types but is present at levels similar to those of PPARα mRNA in adult astrocytes. RXRγ mRNA is present either at low levels, or below the level of detection of the assay, for all cell types studied.  相似文献   

14.
Abstract : In α1, β2, and γ2 subunits of the γ-aminobutyric acid A (GABAA) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in α1 and β2 subunits results each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the γ subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the α1 subunit or the β2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the α and β subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the α subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the α1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the α1 and β2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.  相似文献   

15.

Background

The receptor tyrosine kinase like orphan receptor (ROR)-1 gene is overexpressed in chronic lymphocytic leukemia (CLL). Because Stat3 is constitutively activated in CLL and sequence analysis revealed that the ROR1 promoter harbors γ-interferon activation sequence-like elements typically activated by Stat3, we hypothesized that Stat3 activates ROR1.

Methodology/Principal Findings

Because IL-6 induced Stat3 phosphorylation and upregulated Ror1 protein levels in MM1 cells, we used these cells as a model. We transfected MM1 cells with truncated ROR1 promoter luciferase reporter constructs and found that IL-6 induced luciferase activity of ROR1-195 and upstream constructs. Co-transfection with Stat3 siRNA reduced the IL-6-induced luciferase activity, suggesting that IL-6 induced luciferase activity by activating Stat3. EMSA and the ChIP assay confirmed that Stat3 binds ROR1, and EMSA studies identified two Stat3 binding sites. In CLL cells, EMSA and ChIP studies determined that phosphorylated Stat3 bound to the ROR1 promoter at those two ROR1 promoter sites, and ChIP analysis showed that Stat3 co-immunoprecipitated DNA of STAT3, ROR1, and several Stat3-regulated genes. Finally, like STAT3-siRNA in MM1 cells, STAT3-shRNA downregulated STAT3, ROR1, and STAT3-regulated genes and Stat3 and Ror1 protein levels in CLL cells.

Conclusion/Significance

Our data suggest that constitutively activated Stat3 binds to the ROR1 promoter and activates ROR1 in CLL cells.  相似文献   

16.
In human intestinal epithelial crypt (HIEC) cells, the PI3-K/Akt-1 pathway is crucial for the promotion of cell survival and suppression of anoikis. Class I PI3-K consists of a complex formed by a catalytic (C) and regulatory (R) subunit. Three R (p85α, β, and p55γ) and four C (p110α, β, γ and δ) isoforms are known. Herein, we analyzed the expression of PI3-K isoforms in HIEC cells and determined their roles in cell survival, as well as in the β1 integrin/Fak/Src-mediated suppression of anoikis. We report that: (1) the predominant PI3-K complexes expressed by HIEC cells are p110α/p85β and p110α/p55γ; (2) the inhibition and/or siRNA-mediated expression silencing of p110α, but not that of p110β, γ or δ, results in Akt-1 down-activation and consequent apoptosis; (3) the expression silencing of p85β or p55γ, but not that of p85α, likewise induces Akt-1 down-activation and apoptosis; however, the impact of a loss of p55γ on both Akt-1 activation and cell survival is significantly greater than that from the loss of p85β; and (4) both the p110α/p85β and p110α/p55γ complexes are engaged by β1 integrin/Fak/Src signaling; however, the engagement of p110α/p85β is primarily Src-dependent, whereas that of p110α/p55γ is primarily Fak-dependent (but Src-independent). Hence, HIEC cells selectively express PI3-K isoform complexes, translating into distinct roles in Akt-1 activation and cell survival, as well as in a selective engagement by Fak and/or Src within the context of β1 integrin/Fak/Src-mediated suppression of anoikis.  相似文献   

17.
Abstract: Levels of mRNA for the major subunits of the GABAA receptor were assayed in the rat pituitary anterior and neurointermediate lobes by ribonuclease protection assay. α1, β1, β2, β3, and γ2s were found to be the predominant subunits in the anterior lobe, whereas α2, α3, β1, β3, γ2s, and γ1 were the predominant subunits expressed in the neurointermediate lobe. α5, α6, and δ subunits were not detectable. Hill and Scatchard analysis of [3H]muscimol binding to anterior and neurointermediate lobe membranes showed high-affinity binding sites with dissociation constants of 5.6 and 4.5 n M , respectively, and Hill coefficients near 1. Muscimol sites were present at a maximum of 126 fmol/mg in the anterior lobe and 138 fmol/mg in the neurointermediate lobe. The central-type benzodiazepine antagonist [3H]Ro 15-1788 bound to a high-affinity site with a dissociation constant of 1.5 n M in both tissues, at a maximum of 60 fmol/mg in anterior pituitary and 72 fmol/mg in neurointermediate lobe. A Hill coefficient of 1 was measured for this site in both tissues. Assays of CL 218 872 displacement of Ro 15-1788 were consistent with a pure type I benzodiazepine site in the anterior lobe and a pure type II site in the intermediate lobe. These results are consistent with both tissue-specific expression of particular GABAA receptor subunits and receptor heterogeneity within individual cells in the pituitary.  相似文献   

18.
The pheromone response ofSaccharomyces cerevisiae is mediated by a receptor-coupled heterotrimeric G protein. The βγ subunit of the G protein stimulates a PAK/MAP kinase cascade that leads to cellular changes preparatory to mating, while the pheromone-responsive Gα protein, Gpa1, antagonizes the Gβγ-induced signal. In its inactive conformation, Gpa1 sequesters Gβγ and tethers it to the receptor. In its active conformation, Gpa1 stimulates adaptive mechanisms that downregulate the mating signal, but which are independent of α-βγ binding. To elucidate these potentially novel signaling functions of Gα in yeast, epistasis analyses were performed using N388D, a hyperadaptive mutant form of Gpa1, and null alleles of various loci that have been implicated in adaptation. The results of these experiments indicate the existence of signaling thresholds that affect the yeast mating reaction. At low pheromone concentration, the Regulator of G Protein Signaling (RGS) homologue and putative guanosine triphosphatase (GTPase) activating protein, Sst2, appears to stimulate sequestration of Gβγ by Gpa1. Throughout the range of pheromone concentrations sufficient to cause cell cycle arrest, Gpa1 stimulates adaptive mechanisms that are partially dependent on Msg5 and Mpt5. Gpa1-mediated adaptation appears to be independent of Afr1, Akr1, and the carboxy-terminus of the pheromone receptor.  相似文献   

19.
Abstract: The pentameric subunit composition of a large population (36%) of the cerebellar granule cell GABAA receptors that show diazepam (or clonazepam)-insensitive [3H]Ro 15-4513 binding has been determined by immunoprecipitation with subunit-specific antibodies. These receptors have α6, α1, γ2S, γ2L, and β2 or β3 subunits colocalizing in the same receptor complex.  相似文献   

20.
Estrogen related receptor α-induced adipogenesis is PGC-1β-dependent   总被引:1,自引:0,他引:1  
Ju D  He J  Zhao L  Zheng X  Yang G 《Molecular biology reports》2012,39(3):3343-3354
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号