首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A large series of HLA-A2/HLA-A3 recombinant genes were generated by using the in vivo recombination technique. These genes have each been modified in the last two-thirds of the third exon such that one or several HLA-A2-specific substitutions have been made in the HLA-A3 gene and vice versa. The recombinant genes were transfected into the murine cell line P815 and the transfectants were used as targets for a series of 20 human CTL lines or clones specific for HLA-A2 or HLA-A3, or restricted by HLA-A2 and specific for influenza A. Several patterns of anti-HLA-A2, anti-HLA-A3, and HLA-A2-restricted anti-influenza CTL activity were observed and when uncloned cell lines were studied, a progressive selection of some clones with a similar pattern of activity was regularly found. From the comparison of these different patterns the following conclusions can be drawn: 1) In most but not all cases both domains of the class I molecule were essential for CTL recognition, but residue 152 was critically important for the majority of CTL tested; 2) amino acids 114/116 were also critical in most cases, and their position close to amino acid 152 in the tertiary structure of the molecule may have some functional significance; and 3) amino acid 161, although highly conserved, plays an unexpected but very important role in CTL function.  相似文献   

2.
HLA-A2.1 and HLA-A2.3, which differ from one another at residues 149, 152, and 156, can be distinguished by the mAb CR11-351 and many allogeneic and xenogeneic CTL. Site-directed mutagenesis was used to incorporate several different amino acid substitutions at each of these positions in HLA-A2.1 to evaluate their relative importance to serologic and CTL-defined epitopes. Recognition by mAb CR11-351 was completely lost when Thr but not Pro was substituted for Ala149. A model to explain this result based on the 3-dimensional structure of HLA-A2.1 is presented. In screening eight other mAb, only the substitutions of Pro for Val152 or Gly for Leu156 led to the loss of mAb binding. Because other non-conservative substitutions at these same positions had no effect, these results suggest that the loss of serologic epitopes is in many cases due to a more indirect effect on molecular conformation. Specificity analysis using 28 HLA-A2.1-specific alloreactive and xenoreactive CTL clones showed 19 distinct patterns of recognition. The epitopes recognized by alloreactive CTL clones demonstrated a pronounced effect by all substitutions at residue 152, including the very conservation substitution of Ala for Val. Overall, the most disruptive substitution at amino acid residue 152 was Pro, followed by Glu, Gln, and then Ala. In contrast, substitutions at 156 had little or no effect on allogeneic CTL recognition, and most clones tolerated either Gly, Ser, or Trp at this position. Similar results were seen using a panel of murine HLA-A2.1-specific CTL clones, except that substitutions at position 156 had a greater effect. The most disruptive substitution was Trp, followed by Ser and then Gly. In addition, when assessed on the entire panel of CTL, the effects of Glu and Gln substitutions at position 152 demonstrated that the introduction of a charge difference is no more disruptive than a comparable change in side chain structure that does not alter charge. Taken together, these results indicate that the effect of amino acid replacements at positions 152 and 156 on CTL-defined epitopes depends strongly on the nature of the substitution. Thus, considerable caution must be exercised in evaluating the significance of particular positions on the basis of single mutations. Nonetheless, the more extensive analysis conducted here indicates that there are differences among residues in the class I Ag "binding pocket," with residue 152 playing a relatively more important role in formation of allogeneic CTL-defined epitopes than residue 156.  相似文献   

3.
Previous studies have demonstrated that certain amino acid substitutions in the alpha two domain at positions 152 and 156 in the alpha two helix of the HLA-A2 molecule can affect presentation of the influenza virus matrix peptide M1 55-73 without abolishing binding of the M1 peptide. HLA-A2.1-restricted M1 55-73 peptide-specific CTL lines obtained from almost all HLA-A2.1+ individuals fail to recognize the M1 peptide presented by site-directed mutants of HLA-A2 that have either a Val----Ala or Val----Gln substitution at position 152 or a Leu----Trp substitution at position 156. Only one HLA-A2+ individual (donor Q66, HLA-A2,-B53,-B63) has been found who is able to generate a unique repertoire of HLA-A2-restricted M1 peptide-specific CTL that can recognize peptide presented by HLA-A2 mutants with either an Ala or Gln substitution at position 152 or a Trp substitution at position 156. These Q66 M1 peptide-specific CTL could be selected by stimulation with M1 peptide-pulsed transfectants that express the mutant HLA-A2 gene with the Trp substitution at 156. To determine if the presence of the unique CTL repertoire could be attributed to a variant HLA-A2 molecule in Q66, sequences were determined from polymerase chain reaction-amplified segments of the HLA-A2 RNA. Two different HLA-A2 genes were found expressed in Q66 cells: one is identical to HLA-A2.1 and the other is identical to HLA-A2.2F (Gln----Arg at position 43, Val----Leu at position 95, and Leu----Trp at position 156). These results demonstrate that a different CTL repertoire specific for HLA-A2 plus the M1 55-73 peptide is generated in an individual that expresses both HLA-A2.1 and HLA-A2.2F compared to individuals who express HLA-A2.1 alone, and that the unique repertoire can be selected by the presence of an HLA-A2 molecule with a single amino acid substitution at position 156.  相似文献   

4.
Site-directed mutagenesis of HLA-A2.1 has been used to identify the amino acid substitutions in HLA-A2.3 that are responsible for the lack of recognition of the latter molecule by the HLA-A2/A28 specific antibody, CR11-351, and by HLA-A2.1 specific CTL. Three genes were constructed that encoded HLA-A2 derivatives containing one of the amino acids known to occur in HLA-A2.3: Thr for Ala149, Glu for Val152, and Trp for Leu156. Three additional genes were constructed that encoded the different possible combinations of two amino acid substitutions at these residues. Finally, a gene encoding all three substitutions and equivalent to HLA-A2.3 was constructed. These genes were transfected into the class I negative, human cell line Hmy2.C1R. Analysis of this panel of cells revealed that recognition by the antibody CR11-351 was completely lost when Thr was substituted for Ala149, whereas substitutions at amino acids 152 and 156, either singly or in combination, had no effect on the binding of this antibody. The epitopes recognized by the allogeneic and xenogeneic HLA-A2.1 specific CTL clones used in this study were all affected by either one or two amino acid substitutions. Of those epitopes sensitive to single amino acid changes, none were affected by the substitution of Thr for Ala149, whereas all of them were affected by at least one of the substitutions of Glu for Val 152 or Trp for Leu156. Overall, amino acid residue 152 exerted a stronger effect on the epitopes recognized by HLA-A2.1 specific CTL than did residue 156. Of those epitopes affected only by multiple amino acid substitutions, double substitutions at residues 149 and 152 or at 152 and 156 resulted in a loss of recognition, whereas a mutant with substitutions at residues 149 and 156 was recognized normally. This reemphasizes the importance of residue 152 and indicates that residue 149 can affect epitope formation in conjunction with another amino acid substitution. These results are discussed in the context of current models for the recognition of alloantigens and in light of the recently published three-dimensional structure of the HLA-A2.1 molecule.  相似文献   

5.
Crystallographic studies of the HLA-A2 molecule have led to the assignment of a putative peptide binding site that consists of a groove with a beta-pleated sheet floor bordered by two alpha-helices. A CTL-defined variant of HLA-A2, termed HLA-A2.2F, differs from the common A2.1 molecule by three amino acids: a Leu to Trp substitution at position 156 in the alpha-2 helix, a Val to Leu substitution at position 95 in the beta-sheet floor of the groove, and a Gln to Arg substitution at position 43 in a loop outside of the groove. Another HLA-A2 variant, termed CLA, has a single Phe to Tyr substitution at position 9 that is sterically located adjacent to position 95 in the beta-sheet floor of the groove. We have determined which of the amino acid substitutions at positions 9, 43, 95, or 156 could individually affect recognition by panels of A2.1 allospecific and A2.1-restricted influenza viral matrix peptide-specific CTL lines, using a panel of site-directed mutants and CLA. Recognition by allospecific CTL lines was generally unaffected by any one of the amino acid substitutions, but was eliminated by the double substitution at positions 95 and 156. Allorecognition by some CTL lines was eliminated by a single substitution at position 9 or 95. In contrast, recognition by A2.1-restricted matrix peptide specific CTL was totally eliminated by a single substitution at position 9 or 156. The substitution at position 43 in a loop away from the peptide binding groove had no effect on allorecognition or matrix peptide recognition. These results indicate that amino acid residues in the floor or alpha-2 helical wall of the peptide binding groove of the HLA-A2 molecule can differentially affect allorecognition and viral peptide recognition.  相似文献   

6.
Hemi-exon shuffling and site-directed mutagenesis have been used to determine which amino acid differences between HLA-A2.1 and HLA-A2.2 alter the CTL-defined epitopes on these two molecules. Two genes were constructed that encode novel molecules in which the effect of amino acid differences at residues 9, 43, and 95, or at residue 156 could be separately evaluated. Using both human and murine CTL that were specific for either HLA-A2.1 or HLA-A2.2, four types of epitopes were identified: 1) epitopes that were insensitive to substitutions at either residues 9, 43, and 95, or residue 156 but were lost when all four positions were changed; 2) epitopes that were dependent on the residues 9, 43, 95, but not residue 156; 3) epitopes that were dependent on residue 156, but not amino acid residues 9, 43, and 95; and 4) epitopes that were dependent on residues 9, 43, and 95, as well as amino acid residue 156. Overall, there was a roughly equal distribution of clones recognizing each of these types of epitopes. Additional molecules were constructed by hemi-exon shuffling between the HLA-A2.2 and HLA-A2.3 genes, and by site-directed mutagenesis, to analyze the epitopes recognized by two HLA-A2.2/A2.1 cross-reactive murine CTL that do not recognize HLA-A2.3. Although the epitopes recognized by these CTL were unaffected by changes occurring at residues 9, 43, and 95, or at residues 149, 152, and 156 alone, simultaneous changes in both of these regions acted in concert to destroy the epitopes. Both of the CTL recognized epitopes that were lost when substitutions were made at residues 9, 43, 95, 149, and 152. The epitope recognized by one of the CTL was also destroyed by the substitution of residues 9, 43, 95, 152, and 156. Overall, these results indicate that residues 9, 43, and 95, as well as residues in the alpha-helical region of the molecule, are all capable of contributing to the definition of the epitopes recognized by HLA-A2.1- and HLA-A2.2-specific CTL. They further indicate that some epitopes can be mapped to a particular region of the molecule, whereas other epitopes are formed through a complex interaction of residues in distant regions of the molecule.  相似文献   

7.
Influenza-specific cytotoxic T cells restricted by HLA-A3 recognize differences between HLA-A3 antigens that are serologically indistinguishable. To examine whether this differential recognition had a structural basis, we have compared the structures of HLA-A3 molecules from Epstein Barr virus-transformed peripheral blood lymphocytes of two individuals, E1 and M17. M17 was representative of the majority of HLA-A3-bearing individuals, whereas E1 was a variant distinguished by cytotoxic T cells. Peptide map comparisons revealed a small number of differences when particular amino acids were used to radiolabel the A3 molecules. Sequence analysis and comparison of the results with the prototypic HLA-A3 sequence localized the variability to a tryptic peptide spanning residues 147-157. To obtain the complete amino acid sequence for the E1 and M17 A3 molecules in the 147-157 region, the CNBr fragments beginning at residue 139 were isolated and sequenced. Two amino acid differences were detected between the HLA-A3 molecule of the CTL-defined variant E1 and that of M17. At position 152, Glu in donor M17 had changed to Va1 in donor E1, and at position 156, Leu in donor M17 had changed to Gln in donor E1. The finding that A3 molecules from E1 are altered in the region between residues 147 and 157 is consistent with studies on HLA-A2 variants and Kb mutants showing that this region of class I molecules is important for CTL recognition but not for recognition by serologic reagents.  相似文献   

8.
An influenza B virus nucleoprotein (BNP) peptide, residues 82-94, defined by limited sequence homology with an HLA-A2-restricted peptide from influenza A matrix protein, was recognized by HLA-A2-restricted CTL. Reciprocal inhibition of T cell recognition by the two peptides suggest that the BNP peptide may have lower avidity for HLA-A2 molecules than the matrix peptide. The interaction between this peptide and HLA-A2 was explored by studying the CTL recognition of BNP 82-94 presented by mutant HLA-A2 molecules. Mutations at residues 9, 99, 70, 74, 152 and 156 were found to abolish T cell recognition of the BNP peptide. These results were compared with results previously obtained with the influenza A matrix peptide and suggest that the two peptides bind differently in the peptide binding site.  相似文献   

9.
TCR-gamma delta+ CTL clones were generated from CD4-CD8- T cells that were stimulated twice with the cell line JY. Either IL-2 or IL-4 was used as growth factor. A number of TCR-gamma delta+ clones were found to lyse the stimulator cell line JY. Two of these clones secreted N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase activity after stimulation with JY cells. The cytotoxic activity of these two clones was blocked by a mAb specific for HLA-A2. Moreover, these two TCR-gamma delta+ clones selectively lysed human fibroblast line M1 and murine P815 cells transfected with DNA fragments encoding HLA-A2 but not those transfected with HLA-B7 encoding DNA, indicating that these clones recognize HLA-A2. Analysis of the recognition of HLA-A2 by using target cells transfected with mutated HLA-A2 encoding genes revealed that the nature of the amino acid at position 152 of the molecule is critical for recognition of the TCR-alpha beta+ as well as the TCR-gamma delta+ CTL clones since replacement of Val for Ala at that position resulted in abrogation of recognition of one TCR-gamma delta+ and one TCR-alpha beta+ clone and substitution of Val for Glu affected recognition of all clones. Substitution of Leu for Trp at position 156 abrogated recognition by one TCR-gamma delta+ and one TCR-alpha beta+ T cell clone, but recognition by the other clones was not changed. All clones were able to secrete IL-2, IFN-gamma, and GM-CSF but not IL-4 after activation.  相似文献   

10.
Multiple amino acid sequence differences distinguish individual HLA antigens. Those residues important in immune recognition events have not been defined. Recent studies have identified HLA-A2 structural variants that, although serologically indistinguishable from other HLA-A2 antigens, are recognized poorly, if at all, by HLA-A2-restricted, influenza virus-immune, or HLA-A2-specific alloimmune CTL. In this study we utilize double-label tryptic peptide comparisons performed by both reverse-phase HPLC and cation exchange chromatography, in conjunction with conventional and microsequence analysis, to characterize the HLA-A2 heavy chains derived from variant DK1. We detect a single tryptic peptide that distinguishes DK1 HLA-A2 from the predominant HLA-A2 heavy chain species. This peptide spans residues 147 to 157 in the second heavy chain domain, and carries substitutions at positions 149, 152, and 156. Residues in this segment of the polypeptide are also altered in another HLA-A2 variant, as well as one H-2Kb mutant. Thus, this segment appears to be critical in forming determinants important in CTL recognition of class I antigens in general. On the basis of these and other results, we suggest that in contrast to recognition by alloantibodies, a discrete region of class I antigens may be crucial for CTL recognition.  相似文献   

11.
Amino acid substitutions were introduced into the 45 pocket of HLA-A2.1 to determine the potential role of this structurally defined feature of class I molecules in viral peptide and alloantigen presentation. The 45 pocket lies below the alpha 1-domain alpha-helix and is composed of five amino acids, three of which differ between HLA-A2.1 and HLA-B37. These two class I molecules have previously been shown to have largely non-overlapping peptide-binding specificities. Site-directed mutagenesis was used to replace the hydrophobic residues at positions 24, 45, and 67 in the 45 pocket of HLA-A2.1 with the hydrophilic amino acids found in these positions in HLA-B37. Thus, three single amino acid mutants were produced: 24A----S, 45 M----T, and 67V----S. These mutants were transfected into HMy2.C1R cells and assessed for their ability to present influenza virus matrix M1 57-68 peptide and HTLV-I Tax-1 2-25 peptide to HLA-A2.1-restricted, peptide-specific CTL and to present alloantigens to HLA-A2-allospecific CTL lines. Each of these substitutions in the 45 pocket produced a molecule that failed to present the M1 peptide to most M1 peptide-specific CTL lines. In contrast, none of these mutations affected presentation of the Tax-1 peptide to Tax-1-specific CTL lines, which indicates that these mutant HLA-A2 molecules can function in viral peptide presentation. Two of the three substitutions in the 45 pocket resulted in lack of recognition by a subset of HLA-A2 allospecific CTL lines. These results demonstrate that the amino acid side chains in the 45 pocket can strongly influence peptide presentation and suggest that the 45 pocket may play a role in determining peptide-binding specificity.  相似文献   

12.
Epitope mapping of a MHC class I-restricted cytotoxic T cell response to nef, a regulatory protein of HIV, was performed with fresh PBMC from HIV-seropositive donors and target cells pulsed with a panel of overlapping peptides of the nef protein. These nef-specific CTL recognized a synthetic peptide of 10 residues derived from a nonamphipathic, highly conserved region of the nef protein in association with the HLA A3.1 molecule. Using human cell transfectants expressing mutations of the A3 molecule, we demonstrated that the amino acid at position 152 of the A3.1 molecule appears to be critical for detection of this response. Thus, rapid analysis of the epitopes of HIV proteins stimulating CTL responses can be achieved using a combination of fresh donor PBMC and target cells pulsed with synthesized peptides.  相似文献   

13.
HLA-A2 antigens are divided into four subtypes, designated A2.1 to A2.4, by the use of cytolytic T lymphocytes (CTL). The A2.4 subtype consists of a functionally heterogeneous group of variants that are not recognized by A2.1-, A2.2-, or A2.3-specific CTL lines while it is indistinguishable from A2.1 by isoelectric focusing. The structure of an A2.4 variant expressed on donor KNE has been established by comparative peptide mapping with A2.1 and radiochemical sequencing. It was found to differ from A2.1 by a single amino acid change of Cys to Tyr at position 99. This position is only moderately polymorphic and has not previously been found to vary in any other HLA or H-2 variants. The nature of the change is compatible with its generation by one-point mutation from A2.1. The only other previously characterized A2.4 variant, CLA, differs from A2.1 by a single amino acid replacement at position 9. Both residues 9 and 99 are located in homologous positions within the 1 and 2 domains, respectively. The results shown contribute to the molecular interpretation of the heterogeneity of CTL recognition within the HLA-A2.4 group of antigens.Abbreviations used in this paper CTL cytotoxic T lymphocytes - HPLC high performance liquid chromatography  相似文献   

14.
The localization of the amino acid residues involved in the serologic specificity of the HLA-A2 molecule has been investigated using a combination of site-directed mutagenesis, DNA-mediated gene transfer, indirect immunofluorescence and flow cytometry techniques. Synthetic oligonucleotides were designed to introduce individual and combined amino acid substitutions in both the alpha 1 (positions 9, 43, and the highly polymorphic cluster of residues from aa 62 to 83) and alpha 2 (positions 107, 152, and 156) domains to investigate the effect of the specific mutation on the recognition of the molecule at the surface of transfected human and mouse cell lines by a panel of mAb that recognize monomorphic or polymorphic determinants in MHC class I molecules. At least three non-overlapping serologic epitopes were identified. Mutations in the highly polymorphic region at aa 62 to 66 completely eliminated binding of mAb MA2.1 (A2/B17 cross-reactive). Mutation at position 107 resulted in complete loss of binding of the A2/Aw69-specific mAb PA2.1 and MA2.2 and partial loss of mAb BB7.2 binding. The recognition by other allotypic mAbs was not affected by these mutations and they therefore represent at least a third serologic epitope. Mutations at positions 152 and 156, known to be important for T cell recognition, did not affect serologic recognition. Introduction of residues of HLA-B7 origin in the polymorphic segment spanning aa 70 to 80 created a molecule carrying the -Bw6 supertypic determinant as demonstrated by mAb SFR8-B6 binding.  相似文献   

15.
By using cytolytic T lymphocytes (CTL), the HLA-A2 serologic specificity may be divided into at least four subtypes designated as A2.1 to A2.4. The HLA-A2.4 antigen expressed by donor CLA is not recognized by allogeneic CTL specific for either A2.1, A2.2, or A2.3, but is indistinguishable from HLA-A2.1 by H-Y-specific, HLA-A2-restricted CTL and by isoelectric focusing. The structure of this HLA-A2.4 antigen was compared with the known structure of the main A2.1 subtype expressed on JY cells to establish the molecular basis for the immunologic differences between the two antigens. Comparative peptide mapping and radiochemical sequence analysis were used to establish that they differed by a single amino acid change: Phe at position 9 in HLA-A2.1 was replaced by Tyr in HLA-A2.4 from donor CLA. This position displays the highest variability score among all polymorphic residues of the class I HLA antigens. But its participation in the specific determinants recognized by CTL has not been previously established, because no other known HLA variant or H-2 mutant has been found to vary at this position. In addition, HLA-A2.4 from CLA is the only HLA-A2 subtype antigen that is identical to A2.1 in the segment spanning residues 147 to 157, a region in which all three A2.1, A2.2, and A2.3 antigens are different.  相似文献   

16.
Three predominantly CD8+ CTL lines, TIL 501, TIL 620, and TIL 660, were generated from three HLA-A2+ melanoma patients by culturing tumor-infiltrating lymphocytes in 1000 U/ml IL-2. These tumor-infiltrating lymphocytes lysed 12 of 18 HLA-A2+ autologous and allogeneic melanomas, but none of 20 HLA-A2-negative melanomas. They also did not lyse the MHC class I negative lymphoma-leukemia cell lines, Daudi, K562, or HLA-A2+ non-melanoma cell lines including PHA or Con A-induced lymphoblast, fibroblast, EBV-transformed B cell, Burkitt's B cell lymphoma, and colon cancer cell lines. Autologous and allogeneic melanoma lysis was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag among melanoma cell lines in a TCR-dependent, HLA-A2-restricted manner. Six HLA-A2-negative melanoma cell lines obtained from five HLA-A2-negative patients were co-transfected with the HLA-A2.1 gene and pSV2neo. All 17 cloned transfectants expressing cell surface HLA-A2 molecules, but none of 12 transfectants lacking HLA-A2 expression, were lysed by these three HLA-A2-restricted, melanoma-specific CTL. Lysis of the HLA-A2+ transfectants was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag on transfectants in a TCR-dependent, HLA-A2-restricted manner. These results identify the HLA-A2.1 molecule as an Ag-presenting molecule for melanoma Ag. They also suggest that common melanoma Ag are expressed among melanoma patients regardless of HLA type. These findings have implications for the development of melanoma vaccines that would induce antitumor T cell responses.  相似文献   

17.
Macrophages play an important role in murine cytomegalovirus (MCMV) infection in vivo, both in disseminating infection and in harboring latent virus. MCMV encodes three immune evasion genes (m4, m6, and m152) that interfere with the ability of cytotoxic T cells (CTL) to detect virus-infected fibroblasts, but the efficacy of immune evasion in macrophages has been controversial. Here we show that MCMV immune evasion genes function in H-2(b) primary bone marrow macrophages (BMMphi) in the same way that they do in fibroblasts. Metabolic labeling experiments showed that class I is retained in the endoplasmic reticulum by MCMV infection and associates with m4/gp34 to a similar extent in fibroblasts and BMMphi. We tested a series of K(b)- and D(b)-restricted CTL clones specific for MCMV early genes against a panel of MCMV wild-type virus and mutants lacking m152, m4, or m6. MCMV immune evasion genes effectively inhibited antigen presentation. m152 appeared sufficient to abolish D(b)-restricted presentation in infected macrophages, as has been previously observed in infected fibroblasts. However, for inhibition of recognition of infected macrophages by K(b)-restricted CTL, m4, m6, and m152 were all required. The contribution of m4 to inhibition of recognition appeared much more important in macrophages than in fibroblasts. Thus, MCMV immune evasion genes function effectively in primary macrophages to prevent CTL recognition of early antigens and show the same pattern of major histocompatibility complex class I allele discrimination as is seen in fibroblasts. Furthermore, for inhibition of K(b)-restricted presentation, a strong synergistic effect was noted among m152, m4, and m6.  相似文献   

18.
Two groups of human and murine cytotoxic T lymphocyte (CTL) clones specific for human leukocyte antigen (HLA)-A2 or -B7 can be distinguished based on their ability to kill murine transfectants expressing these molecules. The clones which do not recognize murine transfectants exhibited greatly reduced conjugate formation with these cells, indicating that the inability to lyse these cells occurs in recognition and binding. No systematic differences in inhibitory titer between the two types of CTL clones were seen with anti-CD8 (Lyt-2), anti-LFA-1, or monoclonal antibodies against HLA class I molecules. However, blocking with anti-HLA class I monoclonal antibodies suggested that different CTL clones recognized spatially separate epitopes on HLA-A2 and -B7. In addition, a correlation between the inability to recognize murine transfectants and fine specificity was seen. Eight of nine clones which did not lyse murine transfectants also failed to recognize human cells expressing HLA-A2.2 or -A2.3. In contrast only 5 of 12 clones which lysed transfectants failed to recognize the variant molecules. Analogous data were obtained with human CTL clones raised against HLA-A2.1. These findings suggest that CTL clones that do not lyse murine cells expressing appropriate antigens recognize epitopes that have been altered or lost as a consequence of expression on the murine cell surface. It is suggested that the loss of HLA-associated epitopes on the murine cell surface may be due to differences between mouse and human cells in the processing or presentation of class I-associated peptides.  相似文献   

19.
We have used bulk culture HLA-B7 and HLA-B27 specific CTL lines derived from 11 donors, and a series of rHLA-B7/HLA-B27 genes transfected into and expressed on the surface of the murine cell P815, to determine the amino acid residues on these HLA class I molecules that are critical for allospecific CTL recognition. The results obtained indicate that for four of six HLA-B7-specific CTL lines the alpha-1 domain for CTL recognition. Furthermore, we found that residues 77 and/or 80 had a critical effect on recognition for all of the CTL lines tested. The region 97-156 in the alpha-2 domain was also important for some of these CTL lines. Furthermore, by using five bulk culture HLA-B27-specific CTL lines we were able to show that residues 77 and/or 80 and residue 152 are also essential for recognition of HLA-B27 by HLA-B27-specific CTL. The strong influence exerted by these residues is discussed in terms of the three-dimensional structure of class I molecules. Finally, a selection was regularly observed in the bulk cultures such that the CTL that were preferentially influenced by either the alpha-1 or the alpha-2 domain were lost after 4 to 7 wk of culture resulting in CTL cell lines which were extremely sensitive to sequence modifications of HLA-B7 or HLA-B27. The possible reasons for this selection, which we have previously observed with both anti-HLA-A2 and anti-HLA-A3 cell lines and is therefore not unique to HLA-B7 or HLA-B27, are discussed.  相似文献   

20.
Although in vitro studies have shown that herpesviruses, including murine CMV (MCMV), encode genes that interfere with the MHC class I pathway, their effects on the CTL response in vivo is unclear. We identified a D(b)-restricted CTL epitope from MCMV M45 by screening an MCMV genomic library using CTL clones isolated from mice infected with MCMV lacking m152. Because m152 severely inhibits CTL recognition of M45 in vitro, we questioned whether an M45-specific response would be generated in mice infected with wild-type MCMV expressing m152. Mice infected with wild-type MCMV or MCMVDelta(m)152 made similar responses to the M45 Ag. Moreover, we saw no skewing of the proportion of M45-specific CD8 T cells within the total MCMV-specific response after infection with MCMV with m152. Despite the profound effect m152 has on presentation of M45 in vitro, it does not affect the immunodominance of M45 in the CTL response in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号