首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential differences across the tonoplast and plasmalemmamembranes have been measured in the single cells of Nitellatranslucens, the cells being immersed in an artificial pondwater (composition: NaCl 1.0 mM., KC1 0.1 mM., CaCl2, 0.1 mM.).The potential of the cytoplasm is –138 m V with respectto the bathing medium and –18 mV with respect to the vacuole.The concentrations of Na, K, and Cl have been measured in thetwo cell fractions. The concentrations in the flowing cytoplasmare: Na 14 mM., K 119 mM., and Cl 65 mM.; the vacuolar concentrationsare: Na 65 mM., K 75 mM.,and Cl 160 mM. The observed potential differences across the two membranesare compared with the Nernst potentials for all three ions.This analysis shows that all three ions are actively transportedat the plasmalemma: Na is pumped outwards while K and Cl arepumped inwards. At the tonoplast Na is pumped into the vacuolewhile K and Cl are close to electrochemical equilibrium. The inhibitor, ouabain, has no effect on the cell resting potential.  相似文献   

2.
Membrane potential and resistance, each of which was the sumof those of the plasmalemma and tonoplast, measured in the coenocyticthallus of Boergesenia forbesii were 6.7 mv inside positiveand 2.8 k.cm2, respectively. Protoplasm squeezed from the thallus into artificial sea water(ASW) formed numerous spherical bodies, which are termed aplanospore-likecells (simply "spores"). The following electrical propertiesof the "spores" 20–40 hr after squeezing were obtained:potential difference (p.d.) across plasmalemma (Eco) was –66mv (– means inside negative), plasmalemma resistance 665cm2, p.d. across the tonoplast (Evc) +73 mv, and tonoplast resistance2.6 k.cm2. Tenfold increase in external [K+] caused +45 mv changein Eco and +17 mv in Evc. The plasmalemma was entirely depolarizedin Ca++-free ASW or ASW containing Triton X-100. When the "spore" was immersed in potassium-rich (277 mil) ASW,Eco was almost zero and the tonoplast showed two states (I andII, Eve about +70 mv and +20 mv, respectively). Evc went backand forth between the two states spontaneously or when a smallcurrent was applied. In most cases oscillatory changes in Evcoccurred after the lapse of a long time in the K+-rich sea water.Membrane resistances in states I and II were 5 and 9 k.cm2,respectively. (Received July 11, 1977; )  相似文献   

3.
The effects of light on the pH in the vacuole and the electricpotential difference across the plasmalemma and the tonoplastof Nitellopsis obtusa were investigated by means of conventionaland H+-specific glass or antimony microelectrodes. Illuminationis found to bring about a decrease in the pH of the vacuolarsap by 0.1–0.5 units concomitant with a depolarizationof the cell. The light-induced changes of the potential differenceand the vacuolar pH depend in different ways on the pH of theexternal medium (pHo). At pHo 9.0 cells exhibit great light-inducedpotential changes (up to 100 mV), but only small pH changesof the vacuolar sap. At neutral or slightly acidic pHo valuesthe amplitude of the light-induced pH changes in the vacuoleincreases up to 0.3–0.5 pH units, but the amplitudes ofthe potential changes at the plasmalemma are relatively small.At pHo 9.0 a transient acidification of the medium is observedupon illumination whereas at lower pH values light-induced alkalinizationwas only seen. Transfer of the cells from pHo 9.0 to pHo 7.5results in a cell hyperpolarization by 60–80 mV and adecrease of the vacuolar pH by 0.4–0.5 units under lightconditions but has no significant effect on the potential andthe vacuolar pH in the darkness. It is proposed that mechanismsof active H+ extrusion from the cytoplasm are located both inthe plasmalemma and the tonoplast. The observed acidificationin the vacuole appears to be determined by a light-induced increaseof the concentration of H+ in the cytoplasm. The H+ conductionof the plasmalemma seems to increase on illumination. The patternof the light-induced H+ fluxes across the tonoplast and theplasmalemma depends crucially on the extent of the light-inducedchanges in the H+ conductance and on the electrochemical gradientfor H+ at the plasmalemma.  相似文献   

4.
The vacuolar pH (pHv) and the cytoplasmic pH (pHc) of the marinegiant-celled green alga Chaetomorpha darwinii were measuredby pH microelectrode techniques on extracted vacuolar sap, andby the [I4C]DMO distribution method respectively. Equilibrationof DMO occurred with a half-time of about 2 h, with an apparentPDMO of 3.6 x 10–5 cm s–1, but the vacuolar concentrationof free, undissociated DMO was always less than the externalconcentration. The explanation offered for freshwater giant-celledalgae of net DMO leakage across the plasmalemma cannotapply to Chaetomorpha darwinii, since electrically-driven DMOexit from the cytoplasm should be similar across the plasmalemmaand the tonoplast in these cells with large, vacuole-positivepotential differences across the tonoplast. pHc was accordinglycomputed assuming either tonoplast or plasmalemma equilibrationof DMO, with correction for DMO metabolism within the cell.pHc was 8.0–8.3 in the light in artificial seawater (pHoabout 8.0), was some 0.5 units lower in the dark, and was slightlylower with an external pH of 7. Vacuolar pH was 6.5–6.9,without consistent effects of illumination or of external pHof 7 rather than 8. While µH+ at the tonoplast was similarto that in giant-celled freshwater algae (although with a greatercontribution from relative to pH), µH+ at the plasmalemmawas less than 8 kJ mol–1, i.e. less than one-third ofthe value in freshwater green algae. µNa+ was some 13kJ mol–1 at the plasmalemma. The possibility that theprimary active transport process at the plasmalemma of Chaetomorphadarwinii (and certain other marine algae) is Na+ efflux ratherthan H+ efflux is discussed.  相似文献   

5.
Ca Fluxes and Membrane Potentials in Nitella translucens   总被引:4,自引:0,他引:4  
The concentrations of Ca have been measured in the flowing cytoplasmand the vacuole of the single cells of Nitella translucens,the cells being immersed in an artificial pond Water (composition:NaCl, 1.0 mM; KCl, 0.1 mM; CaCl2, 0. mM). In the flowing cytoplasmthe total concentration is 8 mM and in the vacuole 12 mM. Measurementsof the electrical potential differences across the plasmalemmaand tonoplast membranes show that the cytoplasm is at a potentialof —134 mV with respect to the bathing medium and —24mV with respect to the vacuole. An attempt has been made tomeasure the tracer fluxes of Ca and it is shown that the cellsare not in flux equilibrium. The influx is 0.046 µµmoles cm–2 sec–1; the efflux was too small to measurewith any degree of accuracy. The observed potential differences across both membranes arecompared with the Nernst potentials for Ca. This analysis showsthat Ca is not in electrochemical equilibrium across eithermembrane and that the driving forces on Ca are directed fromthe bathing medium and the vacuole into the cytoplasm. It issuggested that there is no necessity for a metabolically drivenCa pump at the plasmalemma because the low cytoplasmic Ca contentcould be due to the low permeability of the plasmalemma; theGoldman flux equation gives a value of PCa = 4.3x10–8cm sec–1. A Ca pump at the tonoplast appears to be necessaryto explain the steep electrochemical potential gradient fromthe vacuole to the cytoplasm. The efflux of Ca from the isolated cell wall has been measured.From these measurements it was possible to estimate the concentrationof indiffusible anions in the Donnan Free Space; the value obtainedwas 0.74 equiv. 1.–1.  相似文献   

6.
Unidirectional fluxes and the cytoplasmic and vacuolar contentsof potassium and sodium in root cells of intact barley seedlings(Hordeum vulgare L., cv. Villa) were determined by use of compartmentalanalysis. In addition, the net vacuolar accumulation Jcv andthe xylem transport øcx of K+ and Na+ were measured.Both of these data were needed for the evaluation of the effluxdata. Fluxes and compartmental contents of K+ and Na+ were comparableto data obtained with excised roots. The effect of the shoot-to-rootratio—as varied by partial excision of the seedlings seminalroots—on the fluxes and contents was investigated. Highershoot-to-root ratios induced an increase in xylem transport,in plasmalemma influx, and also in the cytoplasmic content ofK+ and Na+. With potassium the plasmalemma efflux was almostunaltered while the tonoplast fluxes and vacuolar content weredecreased (in presence of Na+). With sodium, on the other hand,the plasmalemma efflux and the tonoplast fluxes were also increasedin the plants having one root and a high shoot-to-root ratio.These changes occurred even under conditions of low humidity,when transpiration was low and guttation occurred. The latterwas also increased at the high shoot-to-root ratio. The observedchanges could be due to a relieved feedback control of ion fluxesby the shoot and mediated in part by a relatively higher supplyof photosynthates in the plants having one root In addition,hormonal signals were suggested to participate. In particulara possibly decreased level of cytokinins in the plants havingonly one root could contribute to the signal. The observed changesappear to be responses of the plant to an alteration that canoccur under natural conditions when the root system is damaged.  相似文献   

7.
Daie  Jaleh 《Plant & cell physiology》1989,30(8):1115-1121
Under mild water stress conditions, a potential site of regulationfor distribution of sucrose between osmotic adjustment and exportmay be at the mesophyll plasmalemma and/or tonoplast. This possibilitywas examined in attached leaves of sugarbeet (Beta vulgarisL.), labeled with 14CO2. Leaf discs were exposed to solutionscontaining 400 or 50 mM mannitol to generate "low" or "high"cellular turgor, respectively and release of labeled soluteswas monitored. Response to changes in cell turgor was rapidand reversible. High turgor increased solute efflux rates todouble those at low turgor conditions. Approximately 30% and55% of the released label was in the sugar (sucrose and hexose)fractions at low and high turgor, respectively. Paramercuribenzenesulfonic acid (PCMBS) had no effect on efflux, but N-ethylmaleimide(NEM) and carbonylcyanide-m-chlorophenyl hydrazone (CCCP) enhancedefflux, especially at high turgor. Presence of unlabeled sucrosegreatly enhanced efflux in a turgor-dependent manner; suggestinga sucrose exchange system. While influx across the plasmalemmais both turgor sensitive and carrier-mediated, turgor-regulatedplasmalemma efflux did not appear to involve a carrier. Boththe tonoplast and plasmalemma appeared to be involved in turgor-inducedsugar efflux. Turgor-regulated efflux of solutes from vacuole-containingcells (mesophyll), may contribute to the establishment of ahomeostatic turgor pressure in these cells. (Received June 9, 1989; Accepted September 5, 1989)  相似文献   

8.
The Membrane Potential of Nitella translucens   总被引:4,自引:0,他引:4  
The effects of changing the external concentrations of Na, K,Ca, and Cl on the potentials of the cytoplasm and the vacuolewith respect to the bathing medium of the internodal cells ofNitella translucens have been investigated. The potential differencebetween the vacuole and the cytoplasm is practically unaffectedby the concentration changes. The observed changes of potentialdifference are therefore attributed to the boundary separatingthe cytoplasm from the medium; this boundary is possibly a plasmalemma–cellwall complex. The difference of potential between the cell walland the medium has also been measured and, in the presence ofCa, shown to be markedly sensitive only to the external Ca concentration.The results are divided into two sections: (a) for cells pretreatedin 5 mM NaCl, the subsequent experiments being carried out inCa-free media, and (b) for cells initially immersed in a standardartificial pond water containing the chlorides of Na, K, Ca.With the pretreated cells the external Na/K ratio was variedwith the total NaCl+KCl concentration kept constant at 1.1 mM.The results suggest that over a limited range of concentrationsthe cytoplasm-medium potential difference can be described byan equation similar in form to a Goldman equation but containingonly terms for Na and K, the average value of the permeabilityratio (= PNa/PK) being 0.27. In the presence of Ca the effectsof Na and K on the cytoplasm-medium potential difference aregreatly reduced, while the effect of Ca is relatively large.The results cannot be fitted to any form of Goldman equationcontaining terms for the major ions. The possibility of a contributionto the plasmalemma potential from electrogenic pumps is brieflydiscussed. Measurements of the Na and K content of the cytoplasmand the vacuole have been made for the pretreated cells. TheNa concentration in the cytoplasm is 37 mM and in the vacuole73 mM; the K concentration is 93 mM in the cytoplasm and 67mM in the vacuole. The Nernst potentials for both ions are comparedwith the cytoplasm-medium and cytoplasm-vacuole potential differences.This analysis shows that Na is actively transported from thecytoplasm into the medium as well as into the Vacuole; K ispumped into the cytoplasm from the medium but appears to beclose to electrochemical equilibrium across the tonoplast. ThisConfirms previously published work.  相似文献   

9.
Three artificial electron acceptors of different Eo and charge,hexacyanoferrate (III) (K3Fe(CN)6), hexachloroiridate (IV) (K2IrCl6),and hexabromoiridate (IV) (K2IrBr6), were compared with respectto their rate of reduction by roots of Zea mays L., the concomitantproton secretion, and to the effect on plasmalemma depolarization. It has been shown that these plasma membrane impermeable electronacceptors were reduced by a plasmalemma reductase activity.At low concentrations proton secretion was slightly inhibited,at higher concentrations, however, the rate of proton secretionwas stimulated. The root cell plasmalemma showed a transientdepolarization after addition of all three electron acceptors.The depolarization was concentration-dependent for the iridatecomplexes but not for hexacyanoferrate (III). For both iridatecomplexes maximum depolarization was reached at 50 µmoldm–3. A hypothetical model as an explanation of the redox dependentproton secretion will be given. Key words: Hexachloroiridate (IV), hexabromoiridate (IV), hexacyanoferrate (III), plasmalemma redox, membrane potential, Zea mays  相似文献   

10.
Tonoplast Action Potential of Characeae   总被引:2,自引:0,他引:2  
The plasmalemma action potential was found to be indispensableto the production of the tonoplast action potential. In a solutionlacking Ca2+ and containing other divalent cations such as Ba2+,Mg2+ or Mn2+, the plasmalemma excited in Nitella but did notin Chara. In Nitella, however, both the tonoplast action potentialand EC-coupling were abolished due to depletion of Ca2+ fromthe external medium. Ca2+ ions injected into the cytoplasmiclayer caused a transient change in both plasmalemma and tonoplastpotentials. These results suggest that a transient rise in Ca2+concentration during excitation of the plasmalemma may triggerthe tonoplast action potential. (Received February 14, 1986; Accepted August 29, 1986)  相似文献   

11.
Uptake and Compartmentation of Fluorescent Probes by Plant Cells   总被引:6,自引:0,他引:6  
Several fluorescent compounds are now being used as probes forstudying plant transport processes. This review considers thepotential mechanisms of uptake of such probes with particularemphasis on their subsequent compartmentation within the cell.Physico-chemical parameters, such as the dissociation constant(pKa) and polarity (log kow) of the dye molecule provide importantguides as to the likely permeability of the plasmalemma to differentfluorochromes and an ion-trap mechanism may explain the accumulationof many fluorescent probes by plant cells. However, physico-chemicalparameters alone do not always explain the subsequent compartmentationof fluorescent probes within the cell. Evidence is accumulatingthat many anionic fluorescent probes may cross the plasmalemmain the undissociated state, followed by carrier-mediated transportof the anion across the tonoplast. In the specialized case ofthe highly dissociated dye, Lucifer Yellow CH (LYCH), the physico-chemicalproperties of the molecule would predict that it should be unableto cross membranes. Despite this, there have been several reportsof the movement of LYCH from the apoplast to the vacuole ofplant cells. Fluid-phase endocytosis has been implicated inthe vacuolar accumulation of LYCH and also a range of high-molecularweight, purified fluorescent conjugates. This evidence is discussedin the light of some reports that membrane-impermeant dyes,including LYCH, may cross the tonoplast following their microinjectioninto the cytoplasm.  相似文献   

12.
Sorbitol was transported actively into vacuoles isolated fromapple (Malus pumilla Mill, var domestica Schneid.) fruit flesh.The uptake was stimulated up to twofold by the addition of ATP,and the ATP dependent uptake showed a saturation curve as tothe substrate concentration. The optimum uptake of sorbitolwas pursued in the acidic range of pH 5 to 6. The Km value forthe ATP dependent sorbitol uptake was about 5 mM. Sorbitol uptake was clearly inhibited by PCMB and uncouplers(CCCP and DCCD), and to a lesser extent by orthovanadate, butonly slightly by oligomycin. K+ stimulated sorbitol uptake.Sorbitol was converted to other sugars (glucose) only very slowlywhen transported across the tonoplast. This suggests that sorbitolis transported into vacuoles by a carrier mediated transportsystem coupled with H+- ATPase, localized on the tonoplast.Sucrose uptake into the vacuoles was also enhanced by ATP. (Received May 31, 1986; Accepted March 2, 1987)  相似文献   

13.
The effects of light/dark on anion fluxes in isolated guardcells of Commelina communis L. have been studied, using 82Brand 36Cl. Transfer of open guard cells from light to dark hasno effect on the 82Br influx, but produces a marked transientstimulation of 82Br or 36Cl efflux, similar to the effect ofsuch transfer on the 86Rb fluxes, and to the effects on both86Rb and 82Br fluxes of adding ABA. On return of guard cellsto light, after the transient, there is a further reductionin Cl/Br efflux. It is argued that control of a specific processof ion extrusion is important in regulating the ability of guardcells to stay open. In three out of four batches of steady-statetissue labelled with 82Br, the plasmalemma fluxes were highenough, relative to the tonoplast fluxes, for the efflux kineticsto be separable into two exponential components, allowing estimationof bromide contents in cytoplasm and vacuole (Qc and Qv), andfluxes at plasmalemma and tonoplast. With opening in light,Qc increased by 3.9 ± 0.4 pmol mm–2 µm–1and Qy by 5.2 ± 0.6 pmol mm–2 µm–1(change in content per mm2 of epidermis perµm change inaperture). Using rough estimates for the volumes of cytoplasmand vacuole these figures suggest that at 6.1 µm in thedark the concentrations were about 63 mol m–3 in the cytoplasmand 35 mol m–3 in the vacuole, rising to about 185 molm–3 in the cytoplasm and 125 mol m–3 in the vacuole,at 16.7 µm aperture in light. Neither increase can providean adequate increase in salt concentration to account for theosmotic change required, and some solute other than potassiumsalt must also be involved. In one experiment with 82Br andin the only experiment with 36Cl the plasmalemma flux was lower,and not high enough relative to the tonoplast flux to allowseparation of two phases in the efflux curves, and calculationof cytoplasmic and vacuolar contents and fluxes. The effectsof transfer from light to dark were, nevertheless, similar inboth types of tissue. Key words: Commelina communis L., Light/dark effects, Anion fluxes, Guard cells  相似文献   

14.
Ritchie, R. J. 1987. The permeability of ammonia, methylamineand ethylamine in the charophyte Chara corallina (C. australis).—J.exp. Bot. 38: 67–76 The permeabilities of the amines, ammonia (NH3), methylamine(CH3NH2) and ethylamine (CH3CH2NH2) in the giant-celled charophyteChara corallina (C. australis) R.Br. have been measured andcompared. The permeabilities were corrected for uptake fluxesof the amine cations. Based on net uptake rates, the permeabilityof ammonia was 6?4?0?93 µm s–1 (n = 38). The permeabilitiesof methylamine and ethylamine were measured in net and exchangeflux experiments. The permeabilities of methylamine were notsignificantly different in net and exchange experiments, norto that of ammonia (Pmethylamine = 6?0?0?49 µm s–1(n = 44)). In net flux experiments the apparent permeabilityof ethylamine was slightly greater than that of ammonia andmethylamine (Pethylamine, net = 8?4?1?2 µm s–1 (n= 40)) but the permeability of ethylamine based on exchangeflux data was significantly higher (Pethylamine, exchange =14?1?2 µm s–1 (n = 20)). Methylamine can be validlyused as an ammonium analogue in permeability studies in Chara. The plasmalemma of Chara has acid and alkaline bands; littlediffusion of uncharged amines would occur across the acid bands.The actual permeability of amines across the alkaline bandsis probably about twice the values quoted above on a whole cellbasis i.e. the permeability of ammonia across the permeablepart of the plasmalemma is probably about 12 µm s–1. Key words: Chara, permeability, ammonia, methylamine  相似文献   

15.
In vivo 31P-NMR measurements showed that supplemental Ca2+ (5.0mM CaSO4) decreased the magnitude of the NaCl-induced reductionof the pH gradient across the tonoplast (  相似文献   

16.
The permeability (P) of a lipophilic cation, triphenylmethylphosphonium(TPMP+) which is frequently used as a membrane potential probe,has been measured in Chara australis (Charophyceae). PTPMP+across biological membranes is usually thought to be very highbut this is not the case across the plasmalemma of Chara. Thepermeability of TPMP+ across the plasmalemma was found to betypical of inorganic cations, about 1.0 nm s–1. Estimateswere made of the permeability of lipophilic cations across someother cell membranes, based on previously published work. Thepermeability of TPMP+ across the plasma membranes of the redalga, Griffithsia monilis and the blue-green alga, Anabaenavariabilis was about 2–5 nm s–1. The permeabilityof TPMP+ across the plasma membranes of eukaryotes and prokaryotesappears to be similar. The permeability of lipophilic cationsacross the cristae of isolated mitochondria are exceptionallyhigh, about 170 nm s–1. TPMP+ did not behave as a thiamineanalogue in Chara, unlike in the case of yeast. The means ofentry of TPMP+ into the Chara cell, driven by the electrochemicalgradient across the plasmalemma, has not been identified. Thepresence of a second lipophilic cation probe, DDA+ (dibenzyldimethylammonium),caused a decrease in the uptake flux of TPMP+; this suggeststhat the two lipophilic cations compete for the same site atthe surface of the plasmalemma. Key words: Chara australis, TPMP+, Permeability, Lipophilic cation  相似文献   

17.
The permeability of the plasmalemma of Chlamydomonas reinhardtiicells was increased by treatment with poly-L-lysine or dimethylsulphoxideas indicated by 3-phosphoglyceric acid dependent O2 evolution.These treatments decreased the ability of the cells to accumulateinorganic carbon internally and hence their photosynthetic affinityfor inorganic carbon in the medium. With saturating light andinorganic carbon, the photosynthetic rate was less affectedby the poly-L-lysine and dimethylsulphoxide treatments. Thusthe poly-L-lysine and dimethylsulphoxide did not alter the activityof the chloroplasts but rather made the intracellular inorganiccarbon pool more freely exchangeable with the medium. It isconcluded that the transporting system for inorganic carbonis located at the plasmalemma. Treatment with Diamox, an inhibitor of carbonic anhydrase, didnot affect photosynthetic rate and accumulation of inorganiccarbon when CO2 was supplied but strongly inhibited both parameterswhen HCO3 was supplied. In a mutant of Chlamydomonasreinhardtii lacking a cell wall, carbonic anhydrase leaks tothe medium and uptake of inorganic carbon is much faster whenCO2 is supplied than when HCO3 is supplied. These resultssuggest that CO2 rather than HCO3 is the inorganic carbonspecies that is actively translocated across the plasmalemma. Key words: Chlamydomonas, Inorganic carbon uptake  相似文献   

18.
From compartmental analysis of 15N elution measurements, concentrationsand fluxes of NH+4 and NO3 were estimated for corticalcells in excised root segments, when bathed in a complete nutrientsolution, in which 20 mol m–3 NH4+ or NO3 werethe single N sources. The results were compared with those fornutrient solution containing 20 mol m–3 NH4NO3. No nitratereductase activity was detected in the roots but rapid assimilationof NH4+ occurred, due to glutamine synthetase activity. Theefflux curves for NH4+, on a 'µg 15N remaining againsttime' basis, deviated from the criteria determining conformityto first order kinetics, since the slowest rate constant wasan order of magnitude lower than that exhibited by the curvefor efflux versus time. The data were transformed to conformto the appropriate criteria, revealing a large slowly exchangingpool equated with assimilated NH4+. The presence of NO3had little effect on NH4+ uptake and exchange, but NH4+ suppressedNOj uptake and reduced exchange across plasmalemma and tonoplast.It was established that NH4+ absorption was an active process.However, NH4+ entering and leaving the vacuole was overestimated,since the flux equation used did not differentiate between total15NH4 influx at the plasmalemma and that at the tonoplast, afterassimilation. The only active NO3 transfer was influxat the plasmalemma. The results were compared with those ofothers using13N and 36C1O3 analogues to measure NH4+ and NO3fluxes in cereal roots. Key words: Ammonium, nitrate, compartmental analysis, 15N, active transport  相似文献   

19.
PATRICK  J. W. 《Annals of botany》1987,59(2):181-190
Rates of 14C-photosynthate unloading from excised seed-coathalves of Phaseolus vulgaris L. plants were stimulated by externalKCI concentrations in excess of 10 mM with an optimal responseat 100–150 mM KCI. The cellular pattern of 14C-photosynthatemetabolism was not altered by KCI but the treatment preferentiallystimulated the release of sucrose from the seed-coats. Photosynthateunloading was insensitive to Cl and was stimulated bya range of membrane-permeable cations (Na+, Mg2+ and tetraphenylphosphoniumion) in addition to K+. The K+ ionophore, valinomycin, abolishedthe K+ stimulation of 14C-photosynthate unloading. A switchto a wash solution containing K+ elicited a rapid burst of 14C-photosynthateunloading; the rate constant for the final phase of 14C-efflux(probably across the tonoplast) was unaffected by K+. The KCItreatment did not change the passive permeability of eitherthe plasmalemma or tonoplast. While sucrose influx across theplasmalemma was insensitive to K+, sucrose transfer to the vacuolewas slowed. The results obtained support the postulate thatK+ (and other membrane permeable cations) preferentially stimulatesucrose efflux across the plasmalemma of the unloading cellsby serving to carry positive charge in the opposite direction. Phaseolus vulgaris, bean, photosynthate unloading, potassium stimulation, seed-coat  相似文献   

20.
Extrusion of protons as a response to high-NaCl stress in intactmung bean roots was investigated at different external concentrationsof Ca2+ ions ([Ca2+]ex). The extrusion of protons was graduallyenhanced in the roots exposed to 100 mM NaCl, and high [Ca2+]exdiminished this enhancement of the extrusion. Vesicles of plasmalemmaand tonoplast were prepared from the roots and the H+-translocatingATPase (H+-ATPase) activities associated with the two typesof membrane and the H+-pyrophosphatase (H+-PPase) activity ofthe tonoplast were assayed. The plasmalemma ATPase was stimulatedin parallel with dramatic increases in the intracellular concentrationof Na+([Na+]in). High [Ca2+]ex prevented the increase in [Na+]inand diminished the stimulation of ATPase activity. The tonoplastATPase showed a rapid response to salt stress and was similarlystimulated even at high [Ca2+]M. The activities of both ATPaseswere, however, insensitive to concentrations of Na+ ions upto 100 HIM. By contrast, H+-PPase activity of the tonoplastwas severely inhibited with increasing [Na+]in under salt stressand recovered with high [Ca2+]ex. These findings suggest thathigh-NaCl stress increases the intracellular concentration ofNa+ ions in mung bean roots, which inhibits the tonoplast H+-PPase,and the activity of the plasmalemma H+-ATPase is thereby stimulatedand regulates the cytoplasmic pH. (Received March 26, 1991; Accepted December 13, 1991)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号