首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationship between enzyme heterozygosity and quaternary structure   总被引:8,自引:0,他引:8  
The need for proteins to maintain particular quaternary structures constrains variability in amino acid sequence. Monomeric enzymes are then expected to be more variable than dimeric forms, which in turn are expected to be more variable than tetrameric forms. These predictions are confirmed by analysis of available data on enzyme variation. Theories relating enzyme heterozygosity to metabolic function are discussed in the light of these findings.Financial support for part of the work described in this article was derived from NERC Grant GR3/1558 to J. A. Beardmore.  相似文献   

2.
Carvacrol is a terpene compound with various biological activities. However, few studies have specifically focused on its insecticidal activity and mechanism of carvacrol. The larvae of Lymantria dispar are seriously harmful herbivorous insect. This study measured the antifeedant, growth-inhibitory, and toxic effects of carvacrol on L. dispar larvae. To further clarify the insecticidal mechanism of carvacrol, the effects of carvacrol on detoxifying enzymes, antioxidative enzymes, digestive enzyme activities, and the mRNA expression of the above-mentioned enzyme genes were investigated. The results of the study showed that the median lethal concentration (LC50) and the sublethal concentration (LC20) of carvacrol were 1.120 mg/mL and 0.297 mg/mL, respectively, at 72 h. After LC20 treatment of L. dispar larvae for 72 h, food intake and weight gain were significantly lower compared with the control. Enzyme activity assays showed that carvacrol significantly inhibited the activities of carboxylesterase (CarE), glutathione S-transferase (GST), and acetylcholinesterase (AchE), and the inhibition rate of AchE activity was highest (66.51%). Carvacrol also activated the activities of superoxide dismutase (SOD) and catalase (CAT), while it inhibited the activities of lipase (LIP) and amylase (AMS), and first inhibited and then activated protease. In addition, qRT-PCR tests showed that carvacrol affected the mRNA expression levels of CarE, GST, AchE, SOD, CAT, LIP, AMS, and protease. This study helps to clarify the insecticidal mechanism of carvacrol on L. dispar larvae.  相似文献   

3.
The catalase activity of a non-proliferating suspension of Pseudomonas fluorescens doubled after six hours incubation in a 50 mM phosphate buffer medium (pH 7.3). The same effect was observed in a peptone medium. The increased activity was due to induced enzyme synthesis, and not to activation of preexisting catalase. Induced catalase was separated by electrophoresis from deuterium labelled constitutive catalase. The enzyme was also induced under anaerobic conditions in phosphate buffer or in culture when nitrate was supplied as an electron acceptor. Induction was considerably increased by the addition of various nucleotides and amino acids to the incubation medium.  相似文献   

4.
Biosynthesis of the C-terminal amide in peptide hormones   总被引:2,自引:0,他引:2  
Recent developments in the study of peptide amidation are reviewed. The main areas covered are assay procedures, purification of amidating enzymes, co-fact0rs and regulation; mechanism and specificity of the amidating reaction, and multiple forms of the amidating enzyme and glycosylation. Discussion is presented on aspects that are poorly understood and new areas open to investigation are indicated.  相似文献   

5.
Three distinct forms of -glucosamine 6-P (Gm 6-P):N-acetyltransferases (EC 2.3.1.4) were partially purified from human placental homogenates by carboxy methyl-Sephadex chromatography. Purification of forms I and II were 13.5-fold, while that of form III was 114-fold. All three forms had a pH optimum value of 9.7 in glycine–NaOH buffer. Enzymes II and III had a Km value for Gm 6-P of 3.0 mM, which was less than half of that observed for form I (7.1 mM). The corresponding Km values for acetyl CoA were 0.157 (form I), 0.187 (form II) and 0.280 mM (form III), respectively. Activities of all three forms were inhibited at high concentrations of either substrate. These enzymes were inhibited from 82 to 92% by 2.5 mM p-chloromercuribenzoate. The inhibition was largely reversible by inclusion of 2.5 mM dithiothreitol in the incubation mixtures. There was no requirement for divalent cations, as demonstrated by lack of inhibition of enzyme activity by ethylene diamine tetraacetate. The results are discussed in terms of differences among the enzyme properties of human placental, rodent and porcine liver forms.  相似文献   

6.
Kuo CW  Hung HC  Tong L  Chang GG 《Proteins》2004,54(3):404-411
Human mitochondrial NAD(P)+-dependent malic enzyme was strongly inhibited by Lu3+. The X-ray crystal structures indicated a structural change between the metal-free and Lu3+-containing enzymes (Yang Z, Batra R, Floyd DL, Hung HC, Chang GG, Tong L. Biochem Biophys Res Commun 2000;274:440-444). We characterized the reversible slow-binding mechanism and the structural interconversion between Mn2+- and Lu3+-containing human mitochondrial malic enzymes. When Lu3+ was added, the activity of the human enzyme showed a downward curve over time, similar to that of the pigeon enzyme. The rate of the transformation (k(obs)) from the initial rate to the steady-state rate increased hyperbolically with the concentration of Lu3+, suggesting the involvement of an isomerization step. Lu3+ had a much higher affinity for the isomerized form (K*(i,Lu (app)) = 4.8 microM) than that of the native form (K(i,Lu (app)) = 148 microM). When an excess of Mn2+ was added to the Lu3+-inhibited enzyme, assays of the kinetic activity showed an upward trend, indicating reactivation. This result also indicated that the reactivation was a slow process. Fluorescence quenching experiments confirmed that the Lu3+-induced isomerization was completely reversible. The dynamic quenching constants for the metal-free, Mn2+-containing, and Lu3+-containing enzyme were 3.08, 3.07, and 3.8 M(-1), respectively. When the Lu3+-containing enzyme was treated with excess Mn2+, the dynamic quenching constant returned to the original value (3.09 M(-1)). These results indicated that binding of Mn2+ did not induce any conformational change in the enzyme. The open form transformed to the closed form only after substrate binding. Lu3+, on the other hand, transformed the open form into a catalytically inactive form. Excess Mn2+ could replace Lu3+ in the metal binding site and convert the inactive form back into the open form. This reversible process was slow in both directions because of the same but opposite structural change involved.  相似文献   

7.
8.
Adenosylcobalamin-dependent isomerases catalyze carbon skeleton rearrangements using radical chemistry. We have recently demonstrated that an isobutyryl-CoA mutase variant, IcmF, a member of this enzyme family that catalyzes the interconversion of isobutyryl-CoA and n-butyryl-CoA also catalyzes the interconversion between isovaleryl-CoA and pivalyl-CoA, albeit with low efficiency and high susceptibility to inactivation. Given the biotechnological potential of the isovaleryl-CoA/pivalyl-CoA mutase (PCM) reaction, we initially attempted to engineer IcmF to be a more proficient PCM by targeting two active site residues predicted based on sequence alignments and crystal structures, to be key to substrate selectivity. Of the eight mutants tested, the F598A mutation was the most robust, resulting in an ∼17-fold increase in the catalytic efficiency of the PCM activity and a concomitant ∼240-fold decrease in the isobutyryl-CoA mutase activity compared with wild-type IcmF. Hence, mutation of a single residue in IcmF tuned substrate specificity yielding an ∼4000-fold increase in the specificity for an unnatural substrate. However, the F598A mutant was even more susceptible to inactivation than wild-type IcmF. To circumvent this limitation, we used bioinformatics analysis to identify an authentic PCM in genomic databases. Cloning and expression of the putative AdoCbl-dependent PCM with an α2β2 heterotetrameric organization similar to that of isobutyryl-CoA mutase and a recently characterized archaeal methylmalonyl-CoA mutase, allowed demonstration of its robust PCM activity. To simplify kinetic analysis and handling, a variant PCM-F was generated in which the αβ subunits were fused into a single polypeptide via a short 11-amino acid linker. The fusion protein, PCM-F, retained high PCM activity and like PCM, was resistant to inactivation. Neither PCM nor PCM-F displayed detectable isobutyryl-CoA mutase activity, demonstrating that PCM represents a novel 5′-deoxyadenosylcobalamin-dependent acyl-CoA mutase. The newly discovered PCM and the derivative PCM-F, have potential applications in bioremediation of pivalic acid found in sludge, in stereospecific synthesis of C5 carboxylic acids and alcohols, and in the production of potential commodity and specialty chemicals.  相似文献   

9.
酶制剂研制的国内外进展和发展策略   总被引:3,自引:0,他引:3  
简述了酶工程的研究范围,国际上酶制剂工业发展的研究,特点。概述了近年来我国酶制剂工业发展中存在的问题,包括产品结构,技术含量,研发能力。提出我国酶制剂工业今后发展的一些建议:充分发挥资源优势,加强现代生物技术的应用,调整酶制剂产品的结构。  相似文献   

10.
Suidatrestin, isolated from a Streptomyces strain, was characterized as a new trehalase inhibitor. Its inhibitory potential was 7 to 50-fold higher than that of validamycin when tested against insect, fungal and mammalian trehalases. The kinetic properties of suidatrestin were studied in vitro with trehalases from flight muscle mitochondria of the fly, Protophormia terraenovae, from larval midgut of the moth, Spodoptera littoralis, and from porcine kidney, as well as with maltase from yeast. Suidatrestin was inactive on maltase but inhibited all trehalases with IC50 values of 0.08–0.1 μM; Ki values ranged from 0.02 to 0.05 μM. The very low Ki/Km ratios (3.9×10−6–4.9×10−6) indicated excellent in vitro inhibitory action of suidatrestin. When injected into larvae of S. littoralis, suidatrestin required high and repetitive doses which lead to reversible inhibition of larval growth only. Consecutive omission of the inhibitor even stimulated weight increase above that of controls. Significant mortality was achieved at a rather high dose only. Injection of a growth-inhibiting dose of suidatrestin did not change hemolymph osmolality as a measure of sugar concentration. The discrepancy between in vitro and in vivo potency of suidatrestin may be understood once its chemical structure is fully known.  相似文献   

11.
酶的分子改造和重新设计是解决酶催化工业应用瓶颈的重要途径。基于融合蛋白设计的融合酶技术是分子酶工程的一个研究热点,已逐渐应用于多功能酶和酶靠近效应的构建与控制研究中,显示出重要的理论和应用研究价值。文中对近年来融合酶的分子设计策略和应用研究的进展进行了综述。首先介绍了融合酶的概念和特点,并对最近研究中出现的融合酶构建策略进行了归纳总结,重点阐述了不同种类连接肽对融合酶的影响及其可能机理。同时,对目前融合酶的应用研究进行了归纳和讨论。最后,结合本实验室的研究,指出了融合酶领域的关键问题并对其发展方向进行了探讨和展望。  相似文献   

12.
五步蛇蛇毒的分离纯化及综合利用   总被引:2,自引:0,他引:2  
五步蛇蛇毒冻干粉经过SephadexG-75分子筛层析,使纤溶酶和类凝血酶初步分离;DEAE阴离子交换层析对2种酶进一步分离纯化,分别得到了纤溶酶和类凝血酶。2种酶在HPLC图谱上均呈单一峰,在SDS-PAGE图谱上均为单一条带,纤溶酶分子量大约为24.1kDa,类凝血酶分子量大约为14.4kDa,与以往报道相符。酶的总活力回收率大大提高,纤溶酶的活力回收率达23.9%,类凝血酶的活力回收率达34.5%。实现了对蛇毒的综合利用,为进一步开发利用蛇毒探索了一条有效的途径。  相似文献   

13.
Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 sub-group of CCOs catalyzes a non-canonical reaction consisting of concerted ester cleavage and trans-cis isomerization of all-trans-retinyl esters. It remains unclear whether the former group of CCOs functions as mono- or di-oxygenases. Additionally, a potential role for O2 in catalysis by the RPE65 group of CCOs has not been evaluated to date. Here, we investigated the pattern of oxygen incorporation into apocarotenoid products of Synechocystis apocarotenoid oxygenase. Reactions performed in the presence of 18O-labeled water and 18O2 revealed an unambiguous dioxygenase pattern of O2 incorporation into the reaction products. Substitution of Ala for Thr at position 136 of apocarotenoid oxygenase, a site predicted to govern the mono- versus dioxygenase tendency of CCOs, greatly reduced enzymatic activity without altering the dioxygenase labeling pattern. Reevaluation of the oxygen-labeling pattern of the resveratrol-cleaving CCO, NOV2, previously reported to be a monooxygenase, using a purified enzyme sample revealed that it too is a dioxygenase. We also demonstrated that bovine RPE65 is not dependent on O2 for its cleavage/isomerase activity. In conjunction with prior research, the results of this study resolve key issues regarding the utilization of O2 by CCOs and indicate that dioxygenase activity is a feature common among double bond-cleaving CCOs.  相似文献   

14.
Laboratory evolutionists continue to generate better enzymes for industrial and research applications. Exciting developments include new biocatalysts for enantioselective carbon-carbon bond formation and fatty acid production in plants. Creative contributions to the repertoire of evolutionary methods will ensure further growth in applications and expand the scope and complexity of biological design problems that can be addressed. Researchers are also starting to elucidate mechanisms of enzyme adaptation and natural evolution by testing evolutionary scenarios in the laboratory.  相似文献   

15.
A mild and reproducible method has been developed for the surface-immobilization of enzymes on glutaraldehyde crosslinked gelatin beads. In this method glutaraldehyde is used in a dual capacity, as crosslinking agent and as the enzyme coupling agent. Glucoamylase (exo-α-1,4-d-glucosidase, EC 3.2.1.3), β-d-fructofuranosidase (invertase, EC 3.2.1.26) and β-d-glucoside (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) have been successfully immobilized by this method, on the surface of the crosslinked gelatin particles. The method can be combined with the existing technology for the production of gelatin-entrapped enzymes. Thus, dual immobilized enzyme conjugates of glucoamylase and invertase have been prepared using this method, by entrapment of one enzyme in, and surface-binding of the other to, the gelatin matrix. The coupling of glucoamylase onto cross-linked gelatin particles by precipitation with poly(hexamethylenebiguanide hydrochloride) was also tested.  相似文献   

16.
Lipozyme IM20 from Novo Nordisk (Denmark) was examined after various treatments. Conditions were chosen to reflect those that would be considered in the design of an industrial process. A two-level factorial design was employed to assess the effects of pressurization/depressurization cycles, rate of depressurization and exposure length. A significant three-factor interaction was observed. Lowest residual activity was observed for runs in which the depressurization rate was 86–89 bar min–1. Incubation for 12 h also yielded low residual activity but only when exposing the immobilized enzyme to one cycle. The highest residual activity was obtained for immobilized enzymes repeatedly exposed for periods of 12 h (5 times) with a depressurization rate of 4.3 to 4.45 bar min–1. This effect may be due to the extraction of an inhibiting compound. Tuning process parameters can lead to a seven-fold change in residual activity.  相似文献   

17.
α-酰胺化是神经和内分泌系统中许多生物活性肽重要的翻译后加工过程,由酰胺化酶PAM催化完成.PAM是一个双功能酶,含有两个催化结构域:PHM和PAL,顺序催化酰胺化两步反应.PAM的mRNA和蛋白质具有多样性.作为活性肽生物合成途径中的限速酶,PAM的表达及活力水平具组织特异性,受激素及发育中的相关因素的调节.  相似文献   

18.
ABSTRACT:?

Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzymecatalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.  相似文献   

19.
In this article, the results from a theoretical and experimental investigation of enzyme immobilization in porous membranes are reported. A theoretical model of the immobilization process, which accounts for restricted diffusion of enzyme in the pores of the membrane, has been developed. The model predicts the effect of immobilization kinetics and time of immobilization on the enzyme distribution in the pores of the membrane. The immobilization of glucose oxidase and glucose oxidase-biotin conjugate on porous alumina membranes was experimentally investigated. Enzyme uptake data was correlated to the theory to determine the rate constant of imobilization and the distribution of the enzyme in the pore. Immobilization studies were carried out for enzyme adsorption and for enzyme attachment by covalent coupling. The distribution of enzyme was experimentally studied by assembling five membranes in the diffusion cell. Following immobilization, the membranes were separated and each was assayed for activity. The amount of active enzyme present in each membrane yielded a discrete distribution that compared well with that predicted by theory. (c) 1992 John Wiley & Sons, Inc.  相似文献   

20.
Subunit size of enzymes and genetic heterozygosity in vertebrates   总被引:2,自引:0,他引:2  
There is a small but significant positive correlation between individual locus estimates of heterozygosity and subunit molecular weight in vertebrate dimeric enzymes. This correlation is smaller than that previously shown to exist for Drosophila dimers, and some possible reasons for this are explored. Data for vertebrate tetrameric enzymes are less extensive but appear to give similar trends to those shown by dimers. It is concluded that enzyme heterozygosity is influenced by both subunit size and quaternary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号