首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
糖类(即碳水化合物)是土壤有机质的重要组成部分,经生物化学降解形成不同结构的单糖。土壤中的中性单糖也叫中性糖,主要包括木糖、核糖、阿拉伯糖、葡萄糖、半乳糖、甘露糖、岩藻糖和鼠李糖。其中,植物来源的糖主要为五碳糖,如木糖和阿拉伯糖;微生物来源的糖主要包括半乳糖、甘露糖、岩藻糖、鼠李糖等六碳糖。研究中常利用六碳糖和五碳糖的比例指示微生物和植物对土壤有机碳的相对贡献。中性糖是微生物重要的碳源和能量来源,在团聚体的形成过程中扮演着重要角色。该文整合了近30年土壤中性糖的研究进展,对比了提取中性糖的常用方法,分析了不同土地利用类型和不同土壤组分中中性糖的含量、来源和周转特征,综述了影响中性糖含量和分布的主要环境因素。结果表明,中性糖在耕地土壤中的绝对含量和相对含量均显著低于针叶林、阔叶林、草地和灌丛4种土地利用类型。(半乳糖+甘露糖)/(阿拉伯糖+木糖)(GM/AX)在不同土地利用间差异不显著,而(鼠李糖+岩藻糖)/(阿拉伯糖+木糖)(RF/AX)则表明草地土壤中的微生物来源的中性糖含量高于针叶林和耕地。不同密度的土壤组分中,轻质组分中中性糖的含量比重质组分高,重质组分中微生物来源的中性糖较多;就不同粒径(或团聚体)而言,黏粒(或微团聚体)中微生物来源的中性糖含量更丰富。有关影响土壤中性糖含量和分布的因素的研究,目前主要集中在人为活动(如耕种和放牧等),而有关温度、降水等自然环境因素影响的研究较少。  相似文献   

2.
长白山不同海拔梯度森林土壤中性糖分布特征   总被引:2,自引:0,他引:2  
2010年7月,采集长白山北坡5个典型植被带(阔叶红松林、明针叶林、暗针叶林、岳桦林和高山苔原)林下土壤,研究了不同海拔梯度下森林土壤的中性单糖分布、数量及其影响因素,并结合中性糖来源差异探讨土壤有机质的生物化学积累机制.结果表明: 在长白山不同海拔梯度下,森林土壤的中性糖差异显著,中性糖来源碳在土壤有机碳(SOC)中的相对含量为80.55~170.63 mg·g-1,并且随海拔升高呈递增的趋势.采用多元线性拟合分析发现,生长季平均气温是影响土壤中性糖相对含量的主要因素,低温有助于中性糖的积累.土壤中(半乳糖+甘露糖)/(阿拉伯糖+木糖)为1.62~2.28,且随海拔升高呈增加趋势,说明土壤中微生物来源中性糖的贡献随海拔升高逐渐增加.微生物熵随海拔升高而降低,说明低温条件下微生物活性下降而对外源碳的利用效率提高,植物残体被微生物分解转化后,以微生物同化物的形式固存于土壤中,从而增加了微生物来源中性糖的比例.  相似文献   

3.
裙带菜经水提法提取得到褐藻糖胶粗多糖,经DEAE-Sepharose FF离子交换层析和 Sepharose 4B层析后,得到Sl、S2两个单一组分,相对分子质量分别为550 808、38 335.基本结构及单糖组成分析表明,二者均含有岩藻糖、糖醛酸、硫酸基、半乳糖、甘露糖、葡萄糖、鼠李糖、木糖、阿拉伯糖,但含量差别较大,推测与二者的生理活性的差异有关.  相似文献   

4.
柴雅红  章英才 《广西植物》2017,37(9):1187-1194
以宁夏4个不同地区(灵武、中宁、青铜峡、银川)成熟期的灵武长枣果实为研究对象,经水提醇沉法提取,采用DEAE-cellulose52和HW-55S分离纯化,并利用GC-MS法进行多糖的单糖组成分析。结果表明:多糖提取率最高的是灵武地区,达到1.795%;分离纯化后,4个地区的长枣多糖各得到1个中性(Ju-0)和3个酸性组分(Ju-1、Ju-2、Ju-3),其中Ju-2含量最高;GC-MS分析可知灵武长枣多糖含有阿拉伯糖、鼠李糖、核糖、岩藻糖、木糖、甘露糖、半乳糖、葡萄糖、葡萄糖醛酸、半乳糖醛酸10种单糖,不含果糖,以阿拉伯糖、核糖、半乳糖和2种糖醛酸为主,木糖含量最低。各地区多糖的单糖组成、含量各不相同,从各组分来看,四个地区多糖的Ju-0和Ju-1组分组成均以阿拉伯糖、核糖、半乳糖为主,四个地区多糖的组成差异主要在于Ju-2和Ju-3组分。从各地区单糖总量来看,灵武地区是阿拉伯糖含量最高,中宁、青铜峡、银川地区以葡萄糖醛酸含量为最高。  相似文献   

5.
丹皮多糖PSM2b的纯化及其理化性质研究   总被引:8,自引:1,他引:7  
从中药丹皮(MoutanCortex)蒸馏水浸提液得到粗多糖,经DEAE Cellulose 52柱层析分离得到降血糖组分PSM2b,Surperdex200柱层析进一步纯化得到PSM2b A和PSM2b B两个组分,快速层析纯化系统(FPLC)和电泳鉴定为均一的多糖蛋白复合物。FPLC法测定A和B两组分的分子量分别为1.16×105、1.30×104,苯酚 硫酸法测得其总糖含量分别为76.91%、32.00%,Folin 酚法测得其蛋白含量分别为9.90%、42.60%。气相色谱分析PSM2b A的单糖组成为:L 鼠李糖、L 岩藻糖、L 阿拉伯糖、D 木糖、D 甘露糖、D 葡萄糖、D 半乳糖,摩尔比依次为1.00∶0.18∶4.30∶0.50∶1.30∶2.41∶6.97,PSM2b B的单糖组成为:L 鼠李糖、L 岩藻糖、L 阿拉伯糖、D 葡萄糖、D 半乳糖,摩尔比依次为1.00∶1.17∶0.183∶2.34∶4.18。两者的红外光谱呈现多糖吸收特征峰,含有吡喃糖苷键。β消去反应初步证明所提取的两种糖蛋白不存在O 型糖肽键。  相似文献   

6.
凉粉草胶的初级结构与流变性质的研究   总被引:1,自引:0,他引:1  
凉粉草胶经过DEAE-Sepharose FF分离可以得到中性糖和酸性糖两种组分,其中中性糖的尖峰分子量Mp为5227,酸性糖的尖峰分子量为6566,前者的单糖组成(以摩尔百分比计)为半乳糖:葡萄糖:甘露糖:木糖:阿拉伯糖:鼠李糖=9.9∶15.3∶4.31∶1.48∶11.6∶1,后者的单糖组成为半乳糖:葡萄糖:甘露糖:木糖:阿拉伯糖:半乳糖醛酸:鼠李糖=2.66∶1∶0.37∶2.29∶12.5∶23.5∶5.99。两者再经Sephadex G-100凝胶色谱分离,均为单一对称峰,酸性糖经琼脂糖凝胶电泳,甲苯胺蓝显色为均一斑点,表明所分离得到的两种组分都为均一组分。紫外光谱分析表明两种糖都不含蛋白质或肽段,红外光谱分析表明NMBG和AMBG都具有多糖特征吸收峰,NMBG仅在872 cm-1附近有吸收峰,表明其结构中只有β-糖苷键,AMBG在896和858 cm-1附近有吸收峰,表明其结构中既有β-糖苷键,又有α-糖苷键。流变学实验表明在1%~5%(w/w)内中性糖不具有流变学性质,但酸性糖却表现出明显地流变学性质。  相似文献   

7.
研究宁夏中宁地区灵武长枣果实多糖的单糖成分,为不同地区灵武长枣的开发利用提供试验依据。以不同发育时期中宁产灵武长枣果实为试验材料,采用热水浸提法和气相色谱-质谱联用法(GC-MS)等,探讨不同发育时期果实多糖含量变化规律及其单糖组成成分。结果表明,不同发育时期中宁产灵武长枣果实粗多糖得率分别为:膨大前期0.43%、快速膨大期0.527%、着色期0.80%和完熟期0.618%;果实粗多糖经DEAE-52均得到Ju-0、Ju-1、Ju-2、Ju-3 4个多糖级分,其中Ju-2含量为最高,表明果实多糖的主要形式为酸性多糖;不同发育时期果实各精制多糖总共含有阿拉伯糖、鼠李糖、核糖、岩藻糖、木糖、甘露糖、半乳糖、葡萄糖、葡萄糖醛酸、半乳糖醛酸10种单糖,不含果糖,以阿拉伯糖、半乳糖、核糖、鼠李糖、糖醛酸含量较高,岩藻糖、葡萄糖含量次之,木糖、甘露糖含量较低,但其含量各组分有差异。精制多糖含量随着果实的发育进程总体呈现上升趋势;不同发育时期中宁产灵武长枣果实各精制多糖中单糖组成及含量各不相同。  相似文献   

8.
银耳孢子多糖TF-A、TF-B、TF-C的分离、纯化及组成单糖的鉴定   总被引:25,自引:0,他引:25  
用固体培养法获得的中国福建产银耳孢子(Tremella fucifromis Berk)经热水提取,三氯醋酸-正丁醇除杂蛋白、透析、乙醇沉淀,再通过DEAE-Dextran-Gel A-25柱层析分离和Sephadex G-200柱层析纯化,得到三种白色粉末状的多糖,命名为TF-A、TF-B及TF-C。用聚丙烯酰胺凝胶电泳,葡聚糖凝胶柱层析及气相色谱分析证明三者均为均一体。TF-A、TF-B及TF-C用酸完全水解,经纸层析和气相色谱分析表明:TF-A由L-岩藻糖、L-阿拉伯糖、D-木糖、D-甘露糖、D-半乳糖和D-葡萄糖组成,摩尔比为葡萄糖:甘露糖:木糖:岩藻糖:阿拉伯糖:半乳糖=1.06:1.0:0.33:0.29:0.037:0.75,TF-B及TF-C都由L-岩藻糖、L-阿拉伯糖、D-木糖、D-甘露糖、D-葡萄糖和葡萄糖醛酸组成,摩尔比分别为:葡萄糖:甘露糖:木糖:岩藻糖:阿拉伯糖:葡萄糖醛酸=0.16:1.0:0.28:0.73:0.036:0.19和0.086:1.0:0.37:0.75:0.058:0.37。  相似文献   

9.
以4个不同烤烟品种为研究材料,采用盆栽试验,运用高效毛细管区带电泳法测定各品种根际土、非根际土、根系及叶片中的单糖组分及含量,并分析其相关关系,探究根系分泌物中糖类的分泌特性。结果表明:在各样品中,共检出木糖、葡萄糖、半乳糖、核糖、阿拉伯糖和鼠李糖6种糖;不同品种根际土、非根际土、根系及叶片中检出的糖组分及含量均存在差异;同一品种中,叶片最高,根系次之,根际土和非根际土最低;相关性分析表明,木糖、阿拉伯糖、葡萄糖、鼠李糖和半乳糖总量在根际土、非根际土、叶片和根系间呈正相关关系,各单糖组分间均呈正相关关系,部分组分呈显著或极显著相关关系。研究表明,不同烤烟品种根系分泌这些单糖存在品种差异,且根系分泌单糖可能是一个沿浓度梯度的扩散过程。  相似文献   

10.
采用热水浸提.乙醇沉淀法中药白芍(Paeonia Albiflora Pall)水提取液中分离纯化得到一种多糖蛋白复合物,命名为PAⅡ(Paeonia Albiflora Pall PolysaccharideⅡ,PAⅡ).电泳、FPLC和HPLC检测其纯度;红外光谱和气相色谱法对其结构和组成进行初步分析.结果表明PAⅡ为均一多糖组分,是以D-葡萄吡喃糖为主的多糖-蛋白复合物,总糖含量为85.0%,蛋白含量为13.2%;该糖为吡喃型结构,糖肽键为非O-型;单糖组分为葡萄糖、阿拉伯糖、甘露糖、鼠李糖、木糖,摩尔比为153:2.6:1.25:1:1,平均分子量为5.25×104.  相似文献   

11.
Humic acids from four Brazilian topsoils of different origin and four fungal melanins, synthesized under two cultural conditions were subjected to a two step hydrolysis procedure and the released monosaccharides qualitatively and quantitatively determined by gas-liquid chromatography. The neutral sugars, glucose, galactose, mannose, arabinose, xylose, fucose, rhamnose and the alcohol sugar inositol, were detected in most of the soil humic acid samples. The fungal melanins showed the presence of glucose, galactose, mannose and arabinose. Ribose was present in two out of the eight samples tested. Some quantitative differences in the two types of humic polymers were noted and expected considering their origins. However, similarities were more apparent than differences and give further indication that melanic fungi may play a significant role in the formation of soil humic acids.  相似文献   

12.
Auxin-induced elongation and cell wall polysaccharide metabolism were studied in excised hypocotyl sections of ponderosa pine (Pinus ponderosa) seedlings. Sections excised from hypocotyls of ponderosa pine elongate in response to the addition of auxin. The neutral sugar composition of the extracellular solution removed from hypocotyl sections by centrifugation was examined. In cell wall solution from freshly excised sections, glucose, galactose, xylose, and arabinose make up more than 90% of the neutral sugars, while rhamnose, fucose, and mannose are relatively minor components. The neutral sugar composition of the polysaccharides of the pine cell wall solution is both qualitatively and quantitatively similar to that of pea. Following auxin treatment of pine hypocotyls, the neutral sugar composition of the cell wall changes; glucose, xylose, rhamnose, and fucose increase by nearly 2-fold relative to controls in buffer without auxin. These changes in neutral sugars in response to auxin treatment are similar to those found in pea, with the exception that in pea, rhamnose levels decline in response to auxin treatment.  相似文献   

13.
Summary Utilization of 8 monosaccharides, viz., glucose, fructose, galactose, mannose, sorbose, arabinose, xylose and rhamnose, by some plant pathogenic isolates ofColletotrichum gloeosphorioides andC. dematium has been studied with the help of paper chromatography. Among hexoses, the rate of utilization of glucose, fructose and mannose was fast, whereas, that of galactose was comparatively slow. The rate of assimilation of sorbose was very slow at early stages of incubation, although at later stages this rate showed marked enhancement. The pentoses were utilized readily. The dry weight of mycelial mats showed an increase up to the end of final incubation period (15 days), on sugars which were slowly assimilated. In cases where the sugars were consumed up rapidly, the dry weight at later stages of incubation either became nearly stationary or recorded slight fall.  相似文献   

14.
The simultaneous assay of neutral sugars and amino sugars commonly found in glycoproteins is described. The automatic sugar analyzer used for the determination is based on the ion-exchange chromatography of sugar-borate complexes on a strong anion-exchange resin. The sugars are identified with the orcinol/sulfuric acid reagent. While less than 40 nmol of mannose, fucose, galactose, glucose, xylose, or arabinose is sufficient for analysis at least 200 nmol mannosamine, glucosamine, or galactosamine is required; acidic monosaccharides cannot be determined. The technique of sugar analysis is applied to structural studies on natural compounds, e.g. the monosaccharide composition of lichenan and the carbohydrate moiety of the glycoproteins ovomucoid and Collocalia mucoid.  相似文献   

15.
The metabolism of polysaccharides by pea stem segments treated with and without auxin was investigated using a centrifugation technique for removing solution from the free space of the cell wall. Glucose is the predominant sugar in both the ethanol-soluble and ethanol-insoluble fractions of the cell wall solution extracted with water. In the water-soluble, ethanol-insoluble polysaccharides, arabinose, xylose, galactose, and glucose make up 9.5, 23.8, 23.9, and 39.9%, respectively, of the neutral sugars, while rhamnose, fucose, and mannose are present at concentrations between 0.5 and 2.0%.  相似文献   

16.
Clostridial fermentation of cellulose and hemicellulose relies on the cellular physiology controlling the metabolism of the cellulosic hexose sugar (glucose) with respect to the hemicellulosic pentose sugars (xylose and arabinose) and the hemicellulosic hexose sugars (galactose and mannose). Here, liquid chromatography–mass spectrometry and stable isotope tracers in Clostridium acetobutylicum were applied to investigate the metabolic hierarchy of glucose relative to the different hemicellulosic sugars towards two important biofuel precursors, acetyl‐coenzyme A and butyryl‐coenzyme A. The findings revealed constitutive metabolic hierarchies in C. acetobutylicum that facilitate (i) selective investment of hemicellulosic pentoses towards ribonucleotide biosynthesis without substantial investment into biofuel production and (ii) selective contribution of hemicellulosic hexoses through the glycolytic pathway towards biofuel precursors. Long‐term isotopic enrichment demonstrated incorporation of both pentose sugars into pentose‐phosphates and ribonucleotides in the presence of glucose. Kinetic labelling data, however, showed that xylose was not routed towards the biofuel precursors but there was minor contribution from arabinose. Glucose hierarchy over the hemicellulosic hexoses was substrate‐dependent. Kinetic labelling of hexose‐phosphates and triose‐phosphates indicated that mannose was assimilated but not galactose. Labelling of both biofuel precursors confirmed this metabolic preference. These results highlight important metabolic considerations in the accounting of clostridial mixed‐sugar utilization.  相似文献   

17.
A new derivatization reagent, Fmoc-hydrazine, has been synthesized from the reaction of Fmoc-chloroformate with hydrazine as a precolumn fluorometric labeling reagent for reducing sugars such as glucose, galactose, mannose, fructose, fucose, ribose, xylose, arabinose, lactose, and maltose. The optimization of derivatization conditions was examined in detail. Using a reversed-phase high-performance C-8 column and a mobile phase consisting of acetonitrile-aqueous acetic acid, seven sugar derivatives were separated under either isocratic or gradient conditions within 20 min. The Fmoc-hydrazine and sugar Fmoc-hydrazone derivatives exhibit excellent stability. The extent of the hydrazone formation was 77 and 82% for mannose and fucose as assessed by Dionex high-performance anion-exchange chromatography with pulsed amperometric detection. Linear calibration graphs were established in the range from 0.5 to 2 pmol and 12 to 110 pmol for individual sugar derivatives. The determination limits were 0.05-0.09 pmol for mannose, galactose, and ribose; 0.1 pmol for maltose, xylose, and glucose; 0.2 pmol for fucose and lactose; 0.3 pmol for arabinose; and 0.4 pmol for fructose. The component monosaccharides of ultramicroquantities of two glycoproteins (e.g., from 7 ng fetuin and ovalbumin) were determined in the subpicomole range.  相似文献   

18.
Sugars supplied to germinating seedlings of maize (Zea mays L.) regulate the secretion of polysaccharides by the outer cells of the root cap. The polysaccharide secreted by these cells adheres to the root tip as a droplet and the size of the droplet was used to quantitate polysaccharide secretion. The polysaccharide contains glucose, galacrose, and galacturonic acid residues with smaller quantities of mannose, arabinose, xylose, fucose and rhamnose. These sugars supplied to maize seedlings had marked effects on the rate of polysaccharide secretion by root tips. The effects on secretion were independent of the growth rates of the roots. Glucose, fucose and xylose increased droplet size 1.5–2 fold (as did sucrose, maltose, lacrose, fructose and ribose) whereas galactose, arabinose and galacturonic acid were inhibitory. Mannose increased dropler size 5–7 fold. The marked effect of mannose on polysaccharide secretion was due to an increased rate of secretion combined with a longer phase of extrusion of polysaccharide into the forming droplet. The effect of mannose was partially reversed by inorganic phosphate and other sugars (except for fucose which had no effect or promoted secretion in the presence of mannose). In contrast to sucrose, mannose stimulated secretion in a maize variety having a high sugar endosperm (high endogenous sugar). The results suggest that regulation of secretion by mannose is due to an alteration of normal sugar metabolism; whereas stimulation of secretion by sucrose and other sugars may be due to an increased availability of sugars for metabolism.  相似文献   

19.
Eight species of bifidobacteria were tested for their abilities to grow on a range of monosaccharides (glucose, arabinose, xylose, galactose and mannose). In contrast to the other sugars, glucose and galactose were utilized by all species and, in general, specific growth rates were highest on these sugars. Different substrate preferences were observed between species when the bacteria were grown in the presence of all five monosaccharides. For example, glucose and xylose were coutilized by Bifidobacterium longum, whereas glucose repressed uptake of all other sugars in B. bifidum and B. catenulatum. Galactose was the preferred substrate with B. pseudolongum. In B. angulatum, glucose and galactose were utilized simultaneously. B. breve did not grow on arabinose when this sugar provided the sole source of energy. However, glucose and arabinose were preferentially taken up during growth on sugar mixtures.  相似文献   

20.
The sugar composition of mucilage polysaccharides extracted from activated sludge from five different sewage treatment plats were compared. All the polysaccharides contained rhamnose, fucose, arabisone, xylose, mannose, galactose, glucose, amino sugars, and uronic acids in similar proportions, especially in the neutral sugar fraction. The main components were rhamnose (12–18%), mannose (14–21%), galactose (16–19%), and glucose (15–23%). No significant changes was observed in the sugar composition of activated sludge from a sewage treatment plant over a period of more than one year. Recovery of the mucilage polysaccharides fell to 46% of the initial amount when activated sludge was digested aerobically for 10 days, but the sugar composition was not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号