首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (<66,000). It was concluded that Bifidobacterium spp. and C. butyricum degraded and utilized granules of amylomaize starch.  相似文献   

2.
Cells of Chlamydomonas reinhardtii Dangeard strain cw15arg7A contain electron-opaque material, often in the form of large granules, within cytoplasmic vacuoles. Immunoelectron microscopy with antibodies to polypeptide 11, a component of the major light-harvesting chlorophyll (Chl) a/b-protein complex (LHCII,) of thylakoid membranes, revealed the presence of LHCII Polypeptides within the chloroplast and in vacuolar material in cells grown in the light. Vacuolar material was also heavily immunodecorated in dark-grown cells that did not synthesize Chl. Accumulation of LHCII polypeptides was further studied in greening and light-grown cells of a pale green mutant, deficient in LHCII, that was derived from cu15arg7A by insertional mutagenesis. Light-grown cells of this mutant strain contained relatively few thylakoid membranes and synthesized LHCII polypeptides at a low rate. However, cytoplasmic vacuoles were immunoreactive. Appearance of mature-sized LHCII polypeptides in vacuoles suggested that these proteins were partially translocated across the envelope but not retained by the chloroplast without assembly of LHCII.  相似文献   

3.
The cells ofLactobacillus amylovorus (NRRL B-4540), grown in a medium containing 2% cornstarch as the sole carbon source, secreted an amylase activity that rapidly solubilized cornstarch. Fourier transform infrared (FTIR) spectroscopic analyses showed that 80–90% of starch was consumed by bacteria in a 10-day-old culture medium. The remnant of starch granules digested in the culture medium inoculated with the cells ofL. amylovorus have also lost their characteristic iodine-binding capacity as visualized by starch dye-binding microplate assay and light microscopy. Scanning electron miscroscopy (SEM) of granules from a 48-h culture medium showed hollow and fragmented granules with a pitting phenomenon characteristically produced by-amylase activity. Analysis of an enzyme preparation from a culture medium ofL. amylovorus revealed that the putative enzyme appears to be a single protein band of unusually high Mr (150,000) on SDS gels stained for amylase activity. Analysis of starch digestion products by thin layer chromatography (TLC) showed enzyme activity typical of-amylase.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

4.
Dr. Niina Valanne 《Protoplasma》1976,89(3-4):359-369
Summary Sporelings and protonemata ofCeratodon purpureus were grown in darkness for one to two months. On their exposure to light, starch was observed after 30 minutes but only minor changes occurred in the chloroplast structure during the first hours. After one day in light, the chloroplasts had a structure similar to that of the chloroplasts of light-grown material. The dark-grown material evolved oxygen and assimilated CO2 readily after exposure to light. Nevertheless, maximization of the photosynthetic rate was not achieved until the second day in light, coinciding with the development of light-type chloroplasts. The ultrastructural localization of photosystems I and II revealed much higher activity of PS I in dark-adapted material than in material grown in light, whereas the activity of PS II appeared to be greater in light-grown material.  相似文献   

5.
Starch biosynthesis and degradation was studied in seedlings and mature plants of Euphorbia heterophylla L. and E. myrsinites L. Mature embryos, which lack starch grains in the non-articulated laticifers, develop into seedlings that accumulate starch rapidly when grown either in the light or the dark. Starch accumulation in laticifers of dark-grown seedlings was ca. 47 and 43% of total starch in light-grown controls in E. heterophylla and E. myrsinites, respectively. In light-grown seedlings, starch was present in laticifers as well as parenchyma of stems and leaves, whereas in dark-grown seedlings starch synthesis was almost exclusively limited to laticifers. In 7-month-old plants placed into total darkness, the starch in chyma was depleted within 6 d, whereas starch in laticifers was not mobilized. The starch content of latex in plants during development of floral primordia, flowering, and subsequent fruit formation remained rather constant. The results indicate that laticifers in seedlings divert embryonal storage reserves to synthesize starch even under stress conditions (darkness) in contrast to other cells, and that starch accumulated in laticifers does not serve as a metabolic reserve. The laticifer in Euphorbia functions in the accumulation and storage of secondary metabolites yet retains the capacity to produce, but not utilize starch, a primary metabolite.  相似文献   

6.
It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (Mr) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (<66,000). It was concluded that Bifidobacterium spp. and C. butyricum degraded and utilized granules of amylomaize starch.  相似文献   

7.
This paper describes the morphology and photosynthetic activity of a mutant of Chlamydomonas reinhardi (y-1) which is unable to synthesize chlorophyll in the dark. When grown heterotrophically in the light, the mutant is indistinguishable from the wild type Chlamydomonas. When grown in the dark, chlorophyll is diluted through cell division and the photosynthetic activity (oxygen evolution, Hill reaction, and photoreduction of NADP) decays at a rate equal to or faster than that of chlorophyll dilution. However, soluble enzymes associated with the photosynthetic process (alkaline FDPase, NADP-linked G-3-P dehydrogenase, RuDP carboxylase), as well as cytochrome f and ferredoxin, continue to be present in relatively high concentrations. The enzymes involved in the synthesis of the characteristic lipids of the chloroplast (including mono- and digalactoside glycerides, phosphatidyl glycerol, and sulfolipid) are still detectable in dark-grown cells. Such cells accumulate large amounts of starch granules in their plastids. On onset of illumination, dark-grown cells synthesize chlorophyll rapidly, utilizing their starch reserve in the process. At the morphological level, it was observed that during growth in the dark the chloroplast lamellar system is gradually disorganized and drastically decreased in extent, while other subchloroplast components are either unaffected (pyrenoid and its tubular system, matrix) or much less affected (eyespot, ribosomes). It is concluded that the dark-grown mutant possesses a partially differentiated plastid and the enzymic apparatus necessary for the synthesis of the chloroplast membranes (discs). The advantage provided by such a system for the study of the biogenesis of the chloroplast photosynthetic membranes is discussed.  相似文献   

8.
Cell development and starch granule formation in seeds of three pea (Pisum sativum L.) genotypes, R/R Rb/Rb, r/r Rb/Rb, and R/R rb/rb, affecting cotyledon starch were compared. Cotyledon cells at 10 days after flowering were highly vacuolated and contained small protein bodies in the vacuoles and small oval starch granules in the cytoplasm in all three genotypes. Gradients of cell development from the center to the periphery of the cotyledon and toward the cotyledon-hypocotyl axis persisted through the cell enlargement, reserve synthesis, and into the maturation stages of cotyledon development. By 14 days after flowering, many small vacuoles lined with protein deposits had been formed. Vacuoles were only observed in peripheral and basal cells by 18 days after flowering. Starch granules were oval and birefringent in all three genotypes at 10 days. Starch granules in R/R Rb/Rb and R/R rb/rb cotyledons expanded regularly remaining nearly oval and birefringent throughout development. In contrast, starch granules from r/r Rb/Rb cotyledons began to fragment by 14 days after flowering. This process began as a single fissure, followed by a second fissure usually at or near right angles. Finally, because of the fragmentation, the granules appeared compound, and only a portion of the granule was birefringent. All genotypes contained nearly equal volumes of liquid endosperm and embryo at 10 days after flowering. In addition, a layer of parenchyma tissue (ovular and/or endospermic) inside the seed coat was observed. Although, thin walled and poorly defined cytologically, the parenchyma cells contained large numbers of starch granules. These granules were a mixture of simple and compound types in all genotypes. By 18 days after flowering, the parenchyma tissue was reduced to a small layer of cell walls and all starch granules had been mobilized.  相似文献   

9.
A mouse endometrial cell population has been isolated by mild tryptic digestion of the uterine lining. The cells were morphologically similar to endometrial gland cells in the intact mouse endometrial gland. The endometrial cells had a modal chromosome number of 66. The cells were adherent to glass as well as plastic and contained numerous large refractile, osmophilic, non-membrane-limited granules which stain with periodic acid-Schiff reagent but do not stain with oil red O, Sudan black, or Alcian blue. Cell growth was responsive to 17β-estradiol; cell number increased 1.34-fold in 4 days in the presence of 10?8 M estradiol. The cells are not tumorigenic. The cells showed induction of aryl hydrocarbon hydroxylase (AHH) activity when 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was added to the growth media for 24 h. AHH activity and its induction were investigated with cells grown in the presence and absence 10?8 M estradiol. Cells grown in media containing estradiol exhibited a 6.2-fold induction by TCDD; cells grown without estradiol gave an 8.4-fold induction of AHH activity. AHH activity and its induction by TCDD were demonstrated in cells grown with fetal calf serum that had been pretreated with dextran-coated charcoal to remove endogenous steroids. Benzanthracene failed to induce AHH activity significantly.  相似文献   

10.
11.
Shootlets of Rosa multiflora L. cv. Montse were cultured in vitro with four different levels of sucrose (0, 1, 3 and 5%). Chloroplasts of shootlets grown in a medium without sucrose contained numerous, large plastoglobuli and were lacking in starch granules. The size and number of starch granules increased with the level of sucrose in the culture medium. Starch content in leaves of shootlets grown with 5% sucrose was higher (ca 1, 3%) than those grown with 3% (ca 0, 45%) and 1% sucrose (ca 0, 27%). Starch might be used by the in vitro shootlets during the acclimation period.Abbreviations BA benzyladenine - Pi orthophosphate - S sucrose - Rubisco ribulose 1,5-bisphosphate carboxylase - TEM transmission electron microscopy  相似文献   

12.
Cyst formation in Ceratium hirundinella (O. F. Müll.) Bergh was studied by light and electron microscopy, using material from several lakes and reservoirs and also laboratory cultures. Cells preparing to encyst build up large quantities of starch and lipid and at the same time reduce their other cell components. The cyst is released from the theca as a naked cell bounded by a double membrane. The most commonly found cyst deposits a layer of electron-dense granules containing silicon on the outer membrane and lays down a cellulose-like material between the two membranes. Cysts without the electron-dense granules are commonly formed in cultures but rarely found in lakes. These cysts appear less resistant to decay and do not show the reorganization of cell contents for dormancy. It is suggested that C. hirundinella has both a resting cyst, forming part of the life cycle, and a temporary cyst stage.  相似文献   

13.
We analyzed anther development in Amomum villosum Lour. (Zingiberaceae) using the periodic acid-Schiff's technique and Sudan black staining to test for the presence of starch and lipids, respectively. Our analyses showed that microspore mother cells of A. villosum lack typical callose walls, and numerous lipid granules appear in the cells early in development. Some starch granules are present in anther wall cells, but not in tapetal cells. After meiosis, numerous lipid granules remain unchanged in the microspores. During microspore development, some small starch granules first appear in the central cell region, and then the starch granules increase in size. After microspore division, the bicellular pollen grains become filled with starch and lipids, and remain in this state until the pollen grains reach maturity. At anthesis, the anther wall of A. villosum consists of several layers of endothecium cells with an evidently thickened radial wall, and some layers of parenchyma cells containing numerous starch granules.  相似文献   

14.
Differences in the digestion of barley, maize, and wheat by three major ruminal starch-digesting bacterial species, Streptococcus bovis 26, Ruminobacter amylophilus 50, and Butyrivibrio fibrisolvens A38, were characterized. The rate of starch digestion in all cereal species was greater for S. bovis 26 than for R. amylophilus 50 or B. fibrisolvens A38. Starch digestion by S. bovis 26 was greater in wheat than in barley or maize, whereas starch digestion by R. amylophilus 50 was greater in barley than in maize or wheat. B. fibrisolvens A38 digested the starch in barley and maize to a similar extent but was virtually unable to digest the starch in wheat. The higher ammonia concentration in cultures of B. fibrisolvens A38 when grown on wheat than when grown on barley or maize suggests that B. fibrisolvens A38 utilized wheat protein rather than starch. Scanning electron microscopy revealed that B. fibrisolvens A38 initially colonized cell wall material, while S. bovis 26 randomly colonized the endosperm and R. amylophilus 50 preferentially colonized starch granules. There was subsequent colonization but only superficial digestion of wheat starch granules by B. fibrisolvens A38. Variation in the association between starch and protein within the endosperm of cereal grains contributes to the differential effectiveness with which amylolytic species can utilize cereal starch.  相似文献   

15.
Starch granules from Chlorella, Chlamydomonas and Scenedesmus, grown heterotro-phically in a medium containing organic carbon sources, were isolated by means of the toluol treatment of the sonicate of alga. The toluol treatment separated the starch granules in the water layer from the cells and cell debris coagulated in the upper toluol layer.

The starch granules of Chlorella vulgaris and Chlamydomonas sp. were composed of amylose (12 to 3%) and amylopectin. The amylose content of the starch granules of Scenedesmus basilensis was 22 %. All the X-ray diffraction patterns of algal starch obtained in this investigation were of the A-type, identical to that of corn starch.  相似文献   

16.
Abstract

Fragments of Aesculus hippocastanum L. cotyledons grown in vitro. First results about starch and aescin characteristic features.—Cotyledon fragments of Aesculus hippocastanum grown in vitro in different media have been able to form callus and roots. The starch granules in the new cells are compound in structure and morphologically different from the simple cotyledon granules, whereas they are similar to the granules of the other parts of the plant in toto. Moreover, the callus has no aescin even though it originates from the cotyledor tissues.  相似文献   

17.
The hemocytes of two palaemonids and one penaeid were characterized using light and transmission electron microscopy (TEM). The blood cells in all three species were classified as hyaline hemocytes (HH), small granule hemocytes (SGH), and large granule hemocytes (LGH). The HH are unstable hemocytes with a characteristic high nucleo-cytoplasmic ratio. Their cytoplasm appears particularly dense and has from few to numerous granules that often exhibit a typical striated substructure. In both palaemonids, the great majority of the HH contain numerous granules, whereas in Penaeus paulensis, a small number of these cells have few or no granules. The cytoplasm of some HH of the penaeid exhibits typical electron-dense deposits. The granulocytes, LGH and SGH, contain abundant electron-dense granules that are usually smaller in the SGH. In both hemocyte types, the cytosol, but not the granules, is rich in carbohydrates (PAS positive) and numerous vesicles contain acid phosphatase (Gomori reactive). In all studied shrimps, the SGH and LGH were actively phagocytic when examined on blood cell monolayers incubated with the yeast Saccharomyces cerevisiae. A few mitotic figures (less than 1%) were observed in the granulocytes of P. paulensis, but not in the palaemonids. SGH is the main circulating blood cell type in both palaemonids, whereas HH is predominant in the penaeid. Based on morphological and functional features, it appears that the hyaline and the granular hemocytes of the three shrimp species represent different cell lineages. J. Morphol. 236:209–221, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The immature sieve cell of Pinus strobus contains all of the protoplasmic components commonly encountered in young cell types. In addition, it contains slime bodies with distinct double-layered limiting membranes. The mature sieve cell is lined by a narrow layer of cytoplasm consisting of a plasmalemma, one or more layers of anastomosing tubules of endoplasmic reticulum, numerous mitochondria, starch granules and crystal-like bodies. Each mature cell contains a necrotic nucleus. Ribosomes and dictyosomes are lacking. Strands derived ontogenetically from the slime bodies of the immature cell traverse the central cavity and are continuous with those of neighboring sieve cells through the plasmalemma-lined pores of the sieve areas. Sieve-area pores are also traversed by numerous endoplasmic membranes. A membrane was not found separating the parietal layer of cytoplasm from the large central cavity.  相似文献   

19.
Abstract The ultrastructural features of the abscisic-acid-induced turion of Spirodela polyrrhiza are briefly described and a comparison between turion and vegetative frond tissue was made by stereological analysis. The turion is characterized by its small size, reniform shape, and dark-brown coloration; the mesophyll is undifferentiated and totally lacking the substantial acrenchyma development found in the vegetative frond. The turion cells have a smaller vacuole and a denser cytoplasm than the cells of the vegetative frond. Stereological analysis showed that the tissues differed quantitatively only in three main respects: air space formation, vacuolation, and starch and cell wall material accumulation. During development, it is suggested that the cells of the turion, while reaching the same final size as the vegetative frond cells, accumulate numerous starch grains, thick cell walls, and large deposits of tannins and anthocyanin pigment at the expense of the vacuolar expansion characteristic of the normal maturity programme. Certain features of the turion ultrastructure indicate a differential cell sensitivity to ABA.  相似文献   

20.
The development and release of the unique vegetative propagules of the freshwater encrusting alga Hildenbrandia angolensis Welwitsch ex West et West, gemmae, were studied using several different microscopic and histochemical techniques. In addition, the seasonality of gemma production was monitored bimonthly over a 12‐month period in two spring‐fed streams in Texas, USA. Gemmae differentiate within the thallus and are subsequently released from the surface of the crust. Release of the gemmae most likely occurs by digestion of surrounding cells, as suggested by the presence of starch granules and lipid globules in the region between the released gemma and the thallus. The initial separation of the gemmae from the thallus occurs from the sides of the gemma or the bottom, or possibly simultaneously. Contrary to previous studies, we have observed that gemma production occurs endogenously within the thallus of freshwater Hildenbrandia, rather than on the surface of the crust in raised structures. Histochemical tests and electron microscopic examination indicate that the cells of the gemmae contain a large amount of floridean starch. The starch granules frequently form rings surrounding the nuclei of both gemma and thallus cells; a feature infrequently reported for florideophyte red algae. Our seasonality investigations indicate that large fluctuations in gemma production occur over 1 year, but at least some gemma production continues year‐round in the streams examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号