首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms of pro-apoptotic effects of human-derived Lactobacillus reuteri ATCC PTA 6475 were investigated in this study. L. reuteri secretes factors that potentiate apoptosis in myeloid leukemia-derived cells induced by tumour necrosis factor (TNF), as indicated by intracellular esterase activity, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling assays and poly (ADP-ribose) polymerase cleavage. L. reuteri downregulated nuclear factor-κB (NF-κB)-dependent gene products that mediate cell proliferation (Cox-2, cyclin D1) and cell survival (Bcl-2, Bcl-xL). L. reuteri suppressed TNF-induced NF-κB activation, including NF-κB-dependent reporter gene expression in a dose-and time-dependent manner. L. reuteri stabilized degradation of IκBα and inhibited nuclear translocation of p65 (RelA). Although phosphorylation of IκBα was not affected, subsequent polyubiquitination necessary for regulated IκBα degradation was abrogated by L. reuteri . In addition, L. reuteri promoted apoptosis by enhancing mitogen-activated protein kinase (MAPK) activities including c-Jun N-terminal kinase and p38 MAPK. In contrast, L. reuteri suppressed extracellular signal-regulated kinases 1/2 in TNF-activated myeloid cells. L. reuteri may regulate cell proliferation by promoting apoptosis of activated immune cells via inhibition of IκBα ubiquitination and enhancing pro-apoptotic MAPK signalling. An improved understanding of L. reuteri- mediated effects on apoptotic signalling pathways may facilitate development of future probiotics-based regimens for prevention of colorectal cancer and inflammatory bowel disease.  相似文献   

2.
3.
4.
Caffeic acid phenethyl ester (CAPE), an active component of propolis extracts, has been known for its specific inhibition of nuclear factor κB (NF-κB) and subsequent anti-inflammatory activity. In this study, we report that (i) CAPE exerts its anti-inflammatory action (inhibition of tumor necrosis factor-induced expression of intercellular adhesion molecule-1 and CC chemokine ligand-2) via NF-κB inhibition by two distinct molecular mechanisms in a cell-specific manner: CAPE inhibited downstream pathways of inhibitor κB (IκB) degradation in monocytic cells, while activation of upstream IκB kinase was suppressed by CAPE pre-treatment in astroglial cells; and (ii) CAPE paradoxically activates the c-Jun N-terminal kinase (JNK) pathway, which might be responsible for its pro-apoptotic action and divergent regulation of proinflammatory mediators such as CXC chemokine ligand-8.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes various human diseases, including blindness caused by ocular infection and sexually transmitted diseases resulting from urogenital infection. After infecting host cells, Chlamydiae avoid alarming the host's immune system. Among the immune evasion mechanisms, Chlamydiae can inhibit NF-κB activation, a crucial pathway for host inflammatory responses. In this study, we show that Chla Dub1, a deubiquitinating and deNeddylating protease from C. trachomatis , is expressed in infected cells. In transfection experiments, Chla Dub1 suppresses NF-κB activation induced by several pro-inflammatory stimuli and binds the NF-κB inhibitory subunit IκBα, impairing its ubiquitination and degradation. Thus, we provide further insight into the mechanism by which C. trachomatis may evade the host inflammatory response by demonstrating that Chla Dub1, a protease produced by this microorganism, is capable of inhibiting IκBα degradation and blocking NF-κB activation.  相似文献   

12.
Annexin A2, a multifunctional tumor associated protein, promotes nuclear factor-kappa B (NF-κB) activation by interacting with NF-κB p50 subunit and facilitating its nuclear translocation. Here we demonstrated that two ginsenosides Rg5 (G-Rg5) and Rk1 (G-Rk1), with similar structure, directly bound to Annexin A2 by molecular docking and cellular thermal shift assay. Both Rg5 and Rk1 inhibited the interaction between Annexin A2 and NF-κB p50 subunit, their translocation to nuclear and NF-κB activation. Inhibition of NF-κB by these two ginsenosides decreased the expression of inhibitor of apoptosis proteins (IAPs), leading to caspase activation and apoptosis. Over expression of K302A Annexin A2, a mutant version of Annexin A2, which fails to interact with G-Rg5 and G-Rk1, effectively reduced the NF-κB inhibitory effect and apoptosis induced by G-Rg5 and G-Rk1. In addition, the knockdown of Annexin A2 largely enhanced NF-κB activation and apoptosis induced by the two molecules, indicating that the effects of G-Rg5 and G-Rk1 on NF-κB were mainly mediated by Annexin A2. Taken together, this study for the first time demonstrated that G-Rg5 and G-Rk1 inhibit tumor cell growth by targeting Annexin A2 and NF-κB pathway, and G-Rg5 and G-Rk1 might be promising natural compounds for targeted cancer therapy.  相似文献   

13.
14.
15.
Pancreatitis-associated ascitic fluid (PAAF) is known to contribute to the progression of acute pancreatitis (AP). We have investigated the capability of PAAF to activate the expression of MCP-1 in pancreatic acinar cells and the involvement of MAPK, NF-κB and STAT3 as downstream signalling transduction pathways. The actions of dexamethasone (Dx) and N-acetylcysteine (NAC) on the PAAF's acinar effects have also been evaluated. Acinar cells were incubated for 1 hr with PAAF collected from rats with severe AP induced by sodium taurocholate in the absence or presence of Dx (10−7 M) or NAC (30 mM). MCP-1 mRNA expression, phospho-p38-MAPK, IκBα, nuclear p65 levels and nuclear translocation of STAT3 were analysed. In response to PAAF, overexpression of MCP-1, phosphorylation of p38-MAPK, degradation of IκBα and increases in p65 nuclear levels and STAT3 activity were found in acinar cells. PAAF-mediated MCP-1 up-regulation was completely suppressed by Dx and NAC. MAPK activation was only inhibited by NAC, NF-κB activation was repressed by Dx and NAC, and STAT3 pathway was strongly blocked by Dx and significantly reduced by NAC. In conclusion, acinar cells were activated by PAAF to produce MCP-1, mainly via NF-κB and STAT3 pathways. Both downstream pathways were targeted by Dx and NAC to repress the PAAF-mediated acinar MCP-1 up-regulation.  相似文献   

16.
17.
18.
19.
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a genetic cardiac muscle disease that accounts for approximately 30% sudden cardiac death in young adults. The Ser358Leu mutation of transmembrane protein 43 (TMEM43) was commonly identified in the patients of highly lethal and fully penetrant ARVD subtype, ARVD5. Here, we generated TMEM43 S358L mouse to explore the underlying mechanism. This mouse strain showed the classic pathologies of ARVD patients, including structural abnormalities and cardiac fibrofatty. TMEM43 S358L mutation led to hyper-activated nuclear factor κB (NF-κB) activation in heart tissues and primary cardiomyocyte cells. Importantly, this hyper activation of NF-κB directly drove the expression of pro-fibrotic gene, transforming growth factor beta (TGFβ1), and enhanced downstream signal, indicating that TMEM43 S358L mutation up-regulates NF-κB-TGFβ signal cascade during ARVD cardiac fibrosis. Our study partially reveals the regulatory mechanism of ARVD development.  相似文献   

20.
We have shown that several lipids can modulate the macrophage innate immune response against mycobacteria and enhance their killing. Since NF-κB is required for mycobacterial killing, we tested the ability of lipids to activate NF-κB in uninfected macrophages and those infected with mycobacteria. In uninfected cells, sphingomyelin (SM), phosphatidylinositol-4-phosphate (PIP) and arachidonic acid (AA) enhanced NF-κB activation and the cell surface expression of CD69, a macrophage activation marker regulated by NF-κB. Sphingosine (Sph), sphingosine-1-phosphate (S1P), diacylglycerol (DAG), eicosapentanoic acid (EPA) and phosphatidyl choline (PC) failed to activate either NF-κB or CD69. Ceramide (Cer) activated CD69 expression without activating NF-κB. In Mycobacterium smegmatis- infected cells, NF-κB was transiently activated in a manner that was enhanced by SM, PIP and AA. In contrast Mycobacterium avium mostly repressed NF-κB activation and only SM and AA could induce its partial activation. While lipids that activate NF-κB in uninfected cells tend to kill mycobacteria in macrophages Sph and S1P failed to activate NF-κB under most conditions but nevertheless enhanced killing of M. smegmatis , M. avium and M. tuberculosis H37Rv. Our results argue that both NF-κB-dependent and -independent mechanisms are involved in macrophage killing of mycobacteria and that both mechanisms can be enhanced by selected lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号