首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transplantation of organs from lower animals such as pigsinto humans is prevented by a severe rejection reaction initiatedby complement fixing xenoreactive natural antibodies. Most anti-pigxenoreactive natural antibodies in humans are thought to recognizeGal  相似文献   

2.
(3)J proton-proton coupling constants bear information on the intervening dihedral angles. Methods have been developed to derive this information from NMR spectra of proteins. Using series expansion of the time dependent density matrix, and exploiting the simple topology of amino acid spin-systems, formulae for estimation of (3)J(HN-Halpha) and (3)J(Halpha-Hbeta) from HSQC-TOCSY spectra are derived. The results obtained on a protein entailing both alpha-helix and beta-sheet secondary structure elements agree very well with J-coupling constants computed from the X-ray structure. The method compares well with existing methods and requires only 2D spectra which would be typically otherwise recorded for structural studies.  相似文献   

3.
4.
Chlorophyllide a, pheophorbide a, chlorophyll a and pheophytina were separated in a short time by anion-exchange chromatographywith a short column of DEAE-Sepharose CL-6B. (Received February 16, 1984; Accepted April 13, 1984)  相似文献   

5.
Importin-beta (Impbeta) is a major transport receptor for Ran-dependent import of nuclear cargo. Impbeta can bind cargo directly or through an adaptor such as Importin-alpha (Impalpha). Factors involved in nuclear transport have been well studied, but systems analysis can offer further insight into regulatory mechanisms. We used computer simulation and real-time assays in intact cells to examine Impalpha-beta-mediated import. The model reflects experimentally determined rates for cargo import and correctly predicts that import is limited principally by Impalpha and Ran, but is also sensitive to NTF2. The model predicts that CAS is not limiting for the initial rate of cargo import and, surprisingly, that increased concentrations of Impbeta and the exchange factor, RCC1, actually inhibit rather than stimulate import. These unexpected predictions were all validated experimentally. The model revealed that inhibition by RCC1 is caused by sequestration of nuclear Ran. Inhibition by Impbeta results from depletion nuclear RanGTP, and, in support of this mechanism, expression of mRFP-Ran reversed the inhibition.  相似文献   

6.
Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine.  相似文献   

7.
8.
Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury.  相似文献   

9.
10.
A novel sulphotransferase (sulpho-T) activity from rat colonicmucosa was characterized using O-glycan core 1 substrate, Galß1-3GalNAc  相似文献   

11.
Integrin α9β1 mediates accelerated cell adhesion and migration through interactions with a number of diverse extracellular ligands. We have shown previously that it directly binds the vascular endothelial growth factors (VEGF) A, C, and D and contributes to VEGF-induced angiogenesis and lymphangiogenesis. Until now, the α9β1 binding site in VEGF has not been identified. Here, we report that the three-amino acid sequence, EYP, encoded by exon 3 of VEGF-A is essential for binding of VEGF to integrin α9β1 and induces adhesion and migration of endothelial and cancer cells. EYP is specific for α9β1 binding and neither requires nor activates VEGFR-2, the cognate receptor for VEGF-A. Following binding to EYP, integrin α9β1 transduces cell migration through direct activation of the integrin signaling intermediates Src and focal adhesion kinase. This interaction is biologically important because it mediates in vitro endothelial cell tube formation, wound healing, and cancer cell invasion. These novel findings identify EYP as a potential site for directed pharmacotherapy.  相似文献   

12.
Fusion of spleen cells from a BALB/c mouse immunized with KDN  相似文献   

13.
Several tri- to hexasaccharide-alditols of the jelly coat surroundingthe eggs of Bufo bufo were studied by methylation analysis,MALDI-TOF mass spectrometry, and 1H-NMR spectroscopy. As observedfor six other amphibian species, these carbohydrate chains arehighly species-specific. The main characteristics of the speciesBufo bufo consists in the presence of the new carbohydrate sequenceGal(  相似文献   

14.
Cross-talk between Gα(i)- and Gα(q)-linked G-protein-coupled receptors yields synergistic Ca(2+) responses in a variety of cell types. Prior studies have shown that synergistic Ca(2+) responses from macrophage G-protein-coupled receptors are primarily dependent on phospholipase Cβ3 (PLCβ3), with a possible contribution of PLCβ2, whereas signaling through PLCβ4 interferes with synergy. We here show that synergy can be induced by the combination of Gβγ and Gα(q) activation of a single PLCβ isoform. Synergy was absent in macrophages lacking both PLCβ2 and PLCβ3, but it was fully reconstituted following transduction with PLCβ3 alone. Mechanisms of PLCβ-mediated synergy were further explored in NIH-3T3 cells, which express little if any PLCβ2. RNAi-mediated knockdown of endogenous PLCβs demonstrated that synergy in these cells was dependent on PLCβ3, but PLCβ1 and PLCβ4 did not contribute, and overexpression of either isoform inhibited Ca(2+) synergy. When synergy was blocked by RNAi of endogenous PLCβ3, it could be reconstituted by expression of either human PLCβ3 or mouse PLCβ2. In contrast, it could not be reconstituted by human PLCβ3 with a mutation of the Y box, which disrupted activation by Gβγ, and it was only partially restored by human PLCβ3 with a mutation of the C terminus, which partly disrupted activation by Gα(q). Thus, both Gβγ and Gα(q) contribute to activation of PLCβ3 in cells for Ca(2+) synergy. We conclude that Ca(2+) synergy between Gα(i)-coupled and Gα(q)-coupled receptors requires the direct action of both Gβγ and Gα(q) on PLCβ and is mediated primarily by PLCβ3, although PLCβ2 is also competent.  相似文献   

15.
Pasteurella multocida toxin (PMT) is a potent mitogen, which is known to activate phospholipase Cbeta by stimulating the alpha-subunit of the heterotrimeric G protein G(q). PMT also activates RhoA and RhoA-dependent pathways. Using YM-254890, a specific inhibitor of G(q/11), we studied whether activation of RhoA involves G proteins other than G(q/11). YM-254890 inhibited PMT or muscarinic M3-receptor-mediated stimulation of phospholipase Cbeta at similar concentrations in HEK293m3 cells. In these cells, PMT-induced RhoA activation and enhancement of RhoA-dependent luciferase activity were partially inhibited by YM-254890. In Galpha(q/11)-deficient fibroblasts, PMT induced activation of RhoA, increase in RhoA-dependent luciferase activity, and increase in ERK phosphorylation. None of these effects were influenced by YM-254890. However, RhoA activation by PMT was inhibited by RGS2, RGS16, lscRGS, and dominant negative G(13)(GA), indicating involvement of Galpha(12/13) in the PMT effect on RhoA. In Galpha(12/13) gene-deficient cells, PMT-induced stimulation of RhoA, luciferase activity, and ERK phosphorylation were blocked by YM-254890, indicating the involvement of G(q). Infection with a virus harboring the gene of Galpha(13) reconstituted the increase in RhoA-dependent luciferase activity by PMT even in the presence of YM-254890. The data show that YM-254890 is able to block PMT activation of Galpha(q) and indicate that, in addition to Galpha(q), the Galpha(12/13) G proteins are targets of PMT.  相似文献   

16.
The phosphorylation of heterochromatin protein 1 (HP1) has been previously described in studies of mammals, but the biological implications of this modification remain largely elusive. Here, we show that the N-terminal phosphorylation of HP1α plays a central role in its targeting to chromatin. Recombinant HP1α prepared from mammalian cultured cells exhibited a stronger binding affinity for K9-methylated histone H3 (H3K9me) than that produced in Escherichia coli. Biochemical analyses revealed that HP1α was multiply phosphorylated at N-terminal serine residues (S11-14) in human and mouse cells and that this phosphorylation enhanced HP1α's affinity for H3K9me. Importantly, the N-terminal phosphorylation appeared to facilitate the initial binding of HP1α to H3K9me by mediating the interaction between HP1α and a part of the H3 tail that was distinct from the methylated K9. Unphosphorylatable mutant HP1α exhibited severe heterochromatin localization defects in vivo, and its prolonged expression led to increased chromosomal instability. Our results suggest that HP1α's N-terminal phosphorylation is essential for its proper targeting to heterochromatin and that its binding to the methylated histone tail is achieved by the cooperative action of the chromodomain and neighboring posttranslational modifications.  相似文献   

17.
Endothelial cells actively participate in inflammatory events by regulating leukocyte recruitment via the expression of inflammatory genes such as E-selectin, VCAM-1, ICAM-1, IL-6, IL-8, and cyclooxygenase (COX)-2. In this study we showed by real-time RT-PCR that activation of human umbilical vein endothelial cells (HUVEC) by TNF- and IL-1 differentially affected the expression of these inflammatory genes. Combined treatment with TNF- and IL-1 resulted in nonadditive, additive, and even synergistic induction of expression of VCAM-1, IL-8, and IL-6, respectively. Overexpression of dominant-negative inhibitor B protein blocking NF-B signaling confirmed a major role of this pathway in controlling both TNF-- and IL-1-induced expression of most of the genes studied. Although dexamethasone exerted limited effects at 1 µM, the thioredoxin inhibitor MOL-294, which regulates the redox state of NF-B, mainly inhibited adhesion molecule expression. Its most pronounced effect was seen on VCAM-1 mRNA levels, especially in IL-1-activated endothelium. One micromolar RWJ-67657, an inhibitor of p38 MAPK activity, diminished TNF-- and IL-1-induced expression of IL-6, IL-8, and E-selectin but had little effect on VCAM-1 and ICAM-1. Combined treatment of HUVEC with MOL-294 and RWJ-67657 resulted in significant blocking of the expression of E-selectin, IL-6, IL-8, and COX-2. The inhibitory effects were much stronger than those observed with single drug treatment. Application of combinations of drugs that affect multiple targets in activated endothelial cells may therefore be considered as a potential new therapeutic strategy to inhibit inflammatory disease activity. inflammatory gene expression; anti-inflammatory drugs; pharmacology; combination treatment  相似文献   

18.
Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7??) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.  相似文献   

19.
Holmes  Eric H. 《Glycobiology》1993,3(1):77-81
Biosynthesis of the Lex series of carbohydrate antigens proceedsby fucose transfer in 13-linkage to the penultimate GlcNAc residueof a neolacto-series oligosaccharide acceptor, a reaction catalysedby multiple enzymes expressed in human tissues. Particularlybroad acceptor specificity, including the ability to catalysefucose transfer to both lacto- and neolacto-series acceptorsas well as the precursor Lc3 structure (where Lc3 lactotriaosylceramide,is GlcNAcß13Galß14Glcß1Cer), existsfor one human fucosyltransferase form, the Lewis 13/4fucosyltransferase(FucT-III). To determine if fucose transfer to Lc3may representan alternate early step in Lexor Lea antigen biosynthesis withthis enzyme, the chemical structure of the fucosylated Lc3 reactionproduct formed by the Lewis 13/4fucosyltransferase from Colo205 cells has been defined. Transfer of [14C]fucose to Lc3 yieldeda labelled product migrating as a tetrasaccharide on thin layerchromatography plates. This product remained an acceptor forboth ß13- and ß14-galactosyl transfer onthe terminal GlcNAc residue. The product was degraded to a fucosylatedtrisaccharide derivative by bovine kidney ß-N-acetylglucosaminidase.Fast atom bombardment mass spectrometry and methylation analysisconfirmed that the product was composed exclusively of the followingstructure containing a fucose linked to the 3-position of theinternal Glc residue: GlcNAcß13Galß14Glcß11Cer Such a structure does not represent an intermdiate in LexorLea antigen biosynthesis. Thus, the evidence suggests that Lexor Lea antigen synthesis results exclusively from fucosylationof complete core chains. fucosyltransferase lacto-series LcOse3Cer Lewis antigen transfer specificity  相似文献   

20.
-Carotene was isolated from previously known sources and itsspectral and adsorption properties compared with those of asimilar carotene recently observed in Cryptomonas ovata. Identitywas established. Similar comparisons with synthetic 1-carotenepoint to the identity of the natural and synthetic compoundsand permit assignment of KARRER and EUGSTER's formulation for1-carotene to the naturally occurring representative. 1 Dedicated to Prof. H. TAMIYA on the occasion ot his 60th birthday. 2Contribution from the Scripps Institution of Oceanography,University of California, San Diego. (Received January 22, 1963; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号