首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
目的 长链非编码RNA在遗传、代谢和基因表达调控等方面发挥着重要作用。然而,传统的实验方法解析RNA的三级结构耗时长、费用高且操作要求高。此外,通过计算方法来预测RNA的三级结构在近十年来无突破性进展。因此,需要提出新的预测算法来准确的预测RNA的三级结构。所以,本文发展可以用于提高RNA三级结构预测准确性的碱基关联图预测方法。方法 为了利用RNA理化特征信息,本文应用多层全卷积神经网络和循环神经网络的深度学习算法来预测RNA碱基间的接触概率,并通过注意力机制处理RNA序列中碱基间相互依赖的特征。结果 通过多层神经网络与注意力机制结合,本文方法能够有效得到RNA特征值中局部和全局的信息,提高了模型的鲁棒性和泛化能力。检验计算表明,所提出模型对序列长度L的4种标准(L/10、L/5、L/2、L)碱基关联图的预测准确率分别达到0.84、0.82、0.82和0.75。结论 基于注意力机制的深度学习预测算法能够提高RNA碱基关联图预测的准确率,从而帮助RNA三级结构的预测。  相似文献   

2.
目的 N6-甲基化腺苷(N6-methyladenosine,m6A)是RNA中最常见、最丰富的化学修饰,在很多生物过程中发挥着重要作用。目前已经发展了一些预测m6A甲基化位点的计算方法。然而,这些方法在针对不同物种或不同组织时,缺乏稳健性。为了提升对不同组织中m6A甲基化位点预测的稳健性,本文提出一种能结合序列反向信息来提取数据更高级特征的双层双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络模型。方法 本文选取具有代表性的哺乳动物组织m6A甲基化位点数据集作为训练数据,通过对模型网络、网络结构、层数和优化器等进行搭配,构建双层BiGRU网络。结果 将模型应用于人类、小鼠和大鼠共11个组织的m6A甲基化位点预测上,并与其他方法在这11个组织上的预测能力进行了全面的比较。结果表明,本文构建的模型平均预测接受者操作特征曲线下面积(area under the receiver operating characteristic curve,AUC)达到93.72%,与目前最好的预测方法持平,而预测准确率(accuracy,ACC)、敏感性(sensitivity,SN)、特异性(specificity,SP)和马修斯相关系数(Matthews correlation coefficient,MCC)分别为90.07%、90.30%、89.84%和80.17%,均高于目前的m6A甲基化位点预测方法。结论 和已有研究方法相比,本文方法对11个哺乳动物组织的m6A甲基化位点的预测准确性均达到最高,说明本文方法具有较好的泛化能力。  相似文献   

3.
项和雨  邹斌  唐亮  陈维国  饶凯锋  刘勇  马梅  杨艳 《生态学报》2021,41(17):6883-6892
浮游植物作为水生态系统中最重要的生物组成部分之一,对水环境敏感,在水环境监测中得到了广泛的关注。然而水生环境复杂多样,准确高效地识别浮游植物是监测工作中的一大挑战。当前浮游植物识别方法可分为经典形态学分类、分子标记和人工智能图像识别三类。前两种方法已被广泛采用,但费时费力,不利于监测机构的大规模应用和推广。同样,利用图像进行自动化分类难以在高准确率与高效率上达到平衡。深度学习技术的发展为此提供了新思路。本文提出一种新的深度卷积神经网络RAN-11。该网络以残差注意力网络Attention-56和Attention-92为基础,凭借通道对齐融合主干上的底层特征与顶层特征,通过调整注意力模块和残差快个数以精简结构,并引入了Leaky ReLU激活函数代替ReLU。以太湖11个优势属共计1036张图像为数据来源进行对比验证。除星杆藻外,RAN-11对单一优势属的的查准率都在90%以上,并且有5个优势属达到100%的查准率。RAN-11的识别准确率为95.67%,推理速率为41.5帧/s,不仅比Attention-92(95.19%的准确率,23.6帧/s)更准确,而且比Attention-56(94.71%的准确率,41.2帧/s)更快,真正兼顾了准确率与效率。研究结果表明:(1)RAN-11在查准率、准确率和推理速率上优于原始残差注意力网络,更优于以词包模型为代表的传统图像识别方法;(2)融合多尺度特征、精简网络结构和优化激活函数是提高卷积神经网络性能的有力手段。建立在经典分类基础之上,本文提出新的残差注意力网络来提升浮游植物鉴定技术,并构建出浮游植物自动化识别系统,识别准确率高、易于推广,对于实现水体中浮游植物的自动化监测具有重要意义。  相似文献   

4.
本文提出了一种基于卷积神经网络和循环神经网络的深度学习模型,通过分析基因组序列数据,识别人基因组中环形RNA剪接位点.首先,根据预处理后的核苷酸序列,设计了2种网络深度、8种卷积核大小和3种长短期记忆(long short term memory,LSTM)参数,共8组16个模型;其次,进一步针对池化层进行均值池化和最大池化的测试,并加入GC含量提高模型的预测能力;最后,对已经实验验证过的人类精浆中环形RNA进行了预测.结果表明,卷积核尺寸为32×4、深度为1、LSTM参数为32的模型识别率最高,在训练集上为0.9824,在测试数据集上准确率为0.95,并且在实验验证数据上的正确识别率为83%.该模型在人的环形RNA剪接位点识别方面具有较好的性能.  相似文献   

5.
生物小分子microRNA可以对基因表达进行正向或负向调控,研究microRNA与基因之间的关系对于机体稳态的维持和疾病治疗都有着重要意义。利用深度学习方法对microRNA和基因靶向关系进行预测,提出了TransformerMGI模型。在特征工程阶段,针对生物序列潜在信息难以准确地提取这一问题,TransformerMGI模型分别采用了基于图卷积神经网络的GP-GCN方法和DNA2Vec模型对microRNA和基因数据的潜在信息进行提取,得到了二者的表征嵌入矩阵,在模型方面,TransformerMGI模型引入了幂归一化来改进经典的深度学习模型。利用microRNA和基因数据经过特征提取后得到两个表征矩阵,这两个矩阵分别被放入TransformerMGI模型中,通过TransformerMGI模型内部的Attention机制对二者自身和相互的特征信息进行了聚合和关联运算,最终预测出microRNA调控基因的概率。采用ROC曲线下面积和准确召回率曲线作为模型性能评价指标,将TransformerMGI与其他现有模型进行了比较评估。实验结果表明,TransformerMGI模型的AUC和AUPRC评分均可达0.91以上,优于现有的其他模型。TransformerMGI模型能在不考虑生物学原理和基因组背景的前提下,仅依赖microRNA和基因的碱基序列信息,实现microRNA靶向基因的预测,从而为后续的microRNA靶向基因预测研究提供了可借鉴的深度学习方法。  相似文献   

6.
N6,2′-O-二甲基腺苷(m6Am)是一种常见的RNA分子的可逆修饰。部分研究已经说明m6Am对mRNA的影响,但现阶段对m6Am的生物学功能探索仍不够。所以我们提出了m6AmTwins,一种新的端到端双胞胎网络,将Transformer(自动编码器)和双向门控循环单元(Bi-GRU)有机结合,简单利用RNA序列得到RNA的检测性。相比于现有的算法,本文亮点在于利用对比学习,构建新的损失函数来训练m6AmTwins模型,提高了模型的泛化能力。基于Twins网络和简单编码方案,在两组正负比为1∶10的非平衡数据集下,其独立测试集上均取得了较好的结果,马修斯相关系数(MCC)分别得到0.53和0.545。同时,为增强m6AmTwins模型的鲁棒性(robustness),本文在训练集上还进行了10折交叉验证,其MCC结果分别为0...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号