首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagic degradation of ubiquitinated protein aggregates is important for cell survival, but it is not known how the autophagic machinery recognizes such aggregates. In this study, we report that polymerization of the polyubiquitin-binding protein p62/SQSTM1 yields protein bodies that either reside free in the cytosol and nucleus or occur within autophagosomes and lysosomal structures. Inhibition of autophagy led to an increase in the size and number of p62 bodies and p62 protein levels. The autophagic marker light chain 3 (LC3) colocalized with p62 bodies and co-immunoprecipitated with p62, suggesting that these two proteins participate in the same complexes. The depletion of p62 inhibited recruitment of LC3 to autophagosomes under starvation conditions. Strikingly, p62 and LC3 formed a shell surrounding aggregates of mutant huntingtin. Reduction of p62 protein levels or interference with p62 function significantly increased cell death that was induced by the expression of mutant huntingtin. We suggest that p62 may, via LC3, be involved in linking polyubiquitinated protein aggregates to the autophagy machinery.  相似文献   

2.
Summary The jejunal absorptive cells of the salamander Amphiuma, when examined using transmission electron microscopy, were found to possess a unique type of intracellular vacuole containing membranous tubules. These vanoles, tentatively named multitubular bodies, were located in the cytoplasm between the nucleus and the brush-border membrane, and were seen with greatest frequency in the summer and fall. The vacuoles containing multitubular bodies had an average diameter of 0.6 m, and the membranous tubules within had an average diameter of 30 nm. The tubules differed morphologically from the vesicles in the multivesicular bodies, and from the primary lysosomes in the polylysosomal vacuoles. The tubules did not exhibit acid phosphatase activity, and were of similar diameter and membrane thickness as the Golgi saccules. In contrast to the multivesicular bodies, the multitubular bodies did not take up exogenous horseradish peroxidase. Early forms of autophagosomes resembling these vacuoles were often seen in the para-Golgi region of the cell. The multitubular bodies may represent a distinct type of autophagosome. Although the exact origin of the tubules as well as their role in cellular activity is unclear, their seasonal appearance within the multitubular bodies of the absorptive cells suggests a unique means of selective down-regulation of Golgi-like organelles.  相似文献   

3.
Retinae of blowflies (Lucilia sp.) were exposed to light for 12 h and then investigated by routine electron microscopy. Residual bodies and multi-vesicular bodies containing electron-dense structures were found in the photoreceptor cells. These structures appeared indistinguishable from material inside the pigment granules of secondary pigment cells. The residual bodies were found in interdigitations between photoreceptor and pigment cells and were often in close contact with mitochondria. Lamellar bodies and pigment granules were also found in the extracellular space between photoreceptor and pigment cells. In a second set of experiments, a membrane-impermeable reagent [sulfosuccinimidyl-6-(biotinamido) hexanoate] that should covalently biotinylate the surface of the photosensory membrane was introduced into the ommatidial cavity. The marker was detected, 4 h after application, inside the ommatidial cavity, on the rhabdomeric microvilli, and on residual bodies inside the photoreceptor cells, by streptavidin-gold binding on ultrathin sections. After 6 h of exposure to the reagent, pigment granules of the adjacent pigment cells were also labeled. The results suggest that the photosensory membrane is taken up and degraded together with the marker. Residual bodies resulting from this degradative process may thus be transported into the pigment cells; eventually material originating from photosensory membrane degradation may then be involved in pigment granule synthesis.  相似文献   

4.
The mechanism of isolation membrane formation in autophagy is receiving intensive study. We recently found that Atg9 translocates phospholipids across liposomal membranes and proposed that this functionality plays an essential role in the expansion of isolation membranes. The distribution of phosphatidylinositol 3-phosphate in both leaflets of yeast autophagosomal membranes supports this proposal, but if Atg9-mediated lipid transport is crucial, symmetrical distribution in autophagosomes should be found broadly for other phospholipids. To test this idea, we analyzed the distributions of phosphatidylcholine, phosphatidylserine, and phosphatidylinositol 4-phosphate by freeze-fracture electron microscopy. We found that all these phospholipids are distributed with comparable densities in the two leaflets of autophagosomes and autophagic bodies. Moreover, de novo–synthesized phosphatidylcholine is incorporated into autophagosomes preferentially and shows symmetrical distribution in autophagosomes within 30 min after synthesis, whereas this symmetrical distribution is compromised in yeast expressing an Atg9 mutant. These results indicate that transbilayer phospholipid movement that is mediated by Atg9 is involved in the biogenesis of autophagosomes.  相似文献   

5.
《Autophagy》2013,9(7):683-688
Autophagy is a major intracellular trafficking pathway that delivers proteins and organelles from the cytoplasm into lysosomes for consequential degradation and recycling. Mammalian Atg8s are key autophagic factors that undergo a unique ubiquitin-like conjugation to the lipid phase of the autophagosomal membrane. In addition to their activity in autophagosome formation, several Atg8s directly bind p62/SQSTM1. Here we show that LC3 and GATE-16 differ in their mode of p62 binding. While the soluble form of both LC3 and GATE-16 bind p62, only the lipidated form of LC3 is directly involved in p62 recruitment into autophagosomes. Moreover, by utilizing chimeras of LC3 and GATE-16 where their N-terminus was swapped, we determined the regions responsible for this differential binding. Accordingly, we found that the chimera of GATE-16 containing the LC3 N-terminal region acts similarly to wild-type LC3 in recruiting p62 into autophagosomes. We therefore propose that LC3 is responsible for the final stages of p62 incorporation into autophagosomes, a process selectively mediated by its N-terminus.  相似文献   

6.
Shvets E  Abada A  Weidberg H  Elazar Z 《Autophagy》2011,7(7):683-688
Autophagy is a major intracellular trafficking pathway that delivers proteins and organelles from the cytoplasm into lysosomes for consequential degradation and recycling. Mammalian Atg8s are key autophagic factors that undergo a unique ubiquitin-like conjugation to the lipid phase of the autophagosomal membrane. In addition to their activity in autophagosome formation, several Atg8s directly bind p62/SQSTM1. Here we show that LC3 and GATE-16 differ in their mode of p62 binding. While the soluble form of both LC3 and GATE-16 bind p62, only the lipidated form of LC3 is directly involved in p62 recruitment into autophagosomes. Moreover, by utilizing chimeras of LC3 and GATE-16 where their N-terminus was swapped, we determined the regions responsible for this differential binding. Accordingly, we found that the chimera of GATE-16 containing the LC3 N-terminal region acts similarly to wild-type LC3 in recruiting p62 into autophagosomes. We therefore propose that LC3 is responsible for the final stages of p62 incorporation into autophagosomes, a process selectively mediated by its N-terminus.  相似文献   

7.
The membranous structures of the pulmonary extracellular lining were removed from the lungs of rabbits by pulmonary lavage and isolated by differential centrifugation. This membranous fraction contained 93% of the total extracellular phospholipids present in lavage effluents and consisted of membranous vesicles, membrane fragments, tubular myelin and secreted lamellar bodies. The fraction was rich in phosphatidylcholine (79.4%) containing 85.2% palmitic acid in the 1-position and 57.4% palmitic acid in the 2-position. Phosphatidylglycerol was the next most abundant phospholipid, accounting for 9.4% of the total. E.p.r. spectra, obtained by using 5-doxylmethylstearate as a probe, showed that the extracellular phospholipids of the pulmonary lining were organized into structures which were much more fluid than erythrocyte-ghost membranes. The fluidity of phosphatidylcholine isolated from the membranous fraction was similar to that of the fraction itself, indicating that the minor phospholipids had very little influence on the fluidity of the major phospholipid. At physiological temperature, the fluidity of dipalmitoyl phosphatidylcholine was relatively low, but could be markedly increased by the presence of 1-palmitoyl-2-oleoyl phosphatidylcholine or phosphatidylglycerol (10%). Protein present in the extracellular phospholipid fraction did not affect the fluidity of the fraction. These studies indicate that the unsaturated phosphatidylcholines could play a major role in determining the fluidity of the important surface-tension-lowering phospholipids such as dipalmitoyl phosphatidylcholine.  相似文献   

8.
To identify the structures to be rapidly transported through the axons, we developed a new method to permit local cooling of mouse saphenous nerves in situ without exposing them. By this method, both anterograde and retrograde transport were successfully interrupted, while the structural integrity of the nerves was well preserved. Using radioactive tracers, anterogradely transported proteins were shown to accumulate just proximal to the cooled site, and retrogradely transported proteins just distal to the cooled site. Where the anterogradely transported proteins accumulated, the vesiculotubular membranous structures increased in amount inside both myelinated and unmyelinated axons. Such accumulated membranous structures showed a relatively uniform diameter of 50--80 nm, and some of them seemed to be continuous with the axonal smooth endoplasmic reticulum (SER). Thick sections of nerves selectively stained for the axonal membranous structures revealed that the network of the axonal SER was also packed inside axons proximal to the cooled site. In contrast, large membranous bodies of varying sizes accumulated inside axons just distal to the cooled site, where the retrogradely transported proteins accumulated. These bodies were composed mainly of multivesicular bodies and lamellated membranous structures. When horseradish peroxidase was administered in the distal end of the nerve, membranous bodies showing this activity accumulated, together with unstained membranous bodies. Hence, we are led to propose that, besides mitochondria, the membranous components in the axon can be classified into two systems from the viewpoint of axonal transport: "axonal SER and vesiculotubular structures" in the anterograde direction and "large membranous bodies" in the retrograde direction.  相似文献   

9.
Protein bodies in embryonic axes of soybean seeds have inclusion structures containing phytin globoids. Biogenesis of the protein bodies during seed development was examined by transmission electron microscopy. Protein bodies in embryonic axes originated from central vacuoles. The central vacuole in embryonic axes subdivided into smaller vacuoles with internal membranous structure. Then the subdivided vacuoles were directly associated with rough endoplasmic reticulum (rER), and were filled with proteinaceous matrix from the peripheral region. The increase of matrix was simultaneous with accumulation of β-conglycinin estimated by SDS-polyacrylamide gel electrophoresis. Glycinin-rich granules that had been found in developing cotyledons were not observed in embryonic axes. After proteinaceous matrix filled the protein bodies, electron-transparent regions presumably surrounded by a single membrane appeared in the matrix. Phytin globoids were constructed in this internal structures of protein bodies as the final step of protein body formation.  相似文献   

10.
The ultrastructure of sensomotor cortical neurons was studied by electron microscopy in young rats born to females sensitized with brain antigen before mating. Different membranous inclusions were discovered in neuronal nuclei. The membranous bodies were seen on the second day after birth and could be detected until day 60. It is suggested that the nuclear membranous bodies have been formed in the prenatal period. They may be the result of intraplacental impact of neuroantibodies on the developing embryonic brain.  相似文献   

11.
Within the cortex region of the neonatal rabbit kidney the developing microvasculature was investigated by means of two endothelium-detecting antibodies (EnPo 1 and EC1). Rows of antibody-labelled cells were found within tissue regions that had previously been described as avascular. We conclude that these vessel-like structures detected by EnPo 1 and EC1 are capillary precursors without lumina. Furthermore, beneath the fibrous capsule within the morphologically homogeneous mesenchyme two cell populations can be discriminated by use of differential antigen expression. The EnPo 1 antigen, which is abundant on endothelial cells and podocytes at different developmental stages, was detected on a subpopulation of mesenchymal cells. These cells were exclusively detected surrounding the tip of the collecting duct ampulla. Due to the unique specificity of EC1 and EnPo 1 the process of microvascular development can be readily followed on serial optical sections gained by laser scan microscopy. (1) Adjacent to EnPo 1-positive mesenchymal cell islets vessel-like structures are found that are in contact with the differentiated vasculature. (2) The renal vesicle is enclosed by a network of vessel-like structures establishing contact with differentiated vessels. (3) No guidance of invading capillary sprouts toward the developing glomerulus and nephron is required, since vascular elements already accompany the earliest detectable nephron stage.  相似文献   

12.
Pulmonary surfactant is synthesized and secreted by pulmonary alveolar type II epithelial cells (type II cells). It passes through the alveolar lining fluid and adsorbs to the air-liquid interface. The process from secretion to adsorption is not yet entirely understood. To acquire a detailed understanding of this process, we used multiple observations of type II cells isolated from rat lungs under electron microscopy (EM) and confocal laser scanning microscopy (CLSM). Transmission EM observation demonstrated a loosening process of the intracellular lamellar bodies from the inside to the outside of the cell. Scanning EM observation revealed bubble-like protrusions from the cell surface, and differential interference contrast microscopy illustrated the protrusions expanding with time. CLSM observation with FM 1–43, a fluorescent membrane probe, revealed that the bubble-like protrusions were composed of phospholipids. Thus, we have demonstrated that isolated rat type II cells protrude intracellular lamellar bodies by forming bubble-like structures, possibly enabling them to adsorb to the air-liquid interface directly. These observations suggest a new mechanism for surfactant secretion from type II cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
目的:探究缺氧调控结直肠癌细胞自噬的分子机制。方法:分别在常氧及缺氧(1%氧气浓度)条件下处理细胞,western blot检测细胞内沉默信息调节因子1(Silencing Information Regulator 1,SIRT1)及自噬相关标志分子的表达情况;慢病毒转染构建SIRT1稳定过表达或敲减细胞株,利用透射电镜观察细胞内自噬体形成的情况;使用m RFP-GFP-LC3双标腺病毒感染细胞,在激光扫描共聚焦显微镜下观察细胞自噬流的进展。结果:Western blot结果显示,缺氧条件下,HCT116及SW480细胞内SIRT1的表达水平随着缺氧时间的延长而降低,自噬特异性底物p62蛋白水平降低且LC3-I/II转换增加;与对照组相比,SIRT1过表达细胞内自噬特异性底物p62的表达水平升高而LC3-I/II转换受到抑制;相反在SIRT1敲减细胞内,p62的表达水平降低而LC3-I/II转换进一步促进。透射电镜结果发现SIRT1过表达后,细胞内自噬溶酶体形成减少、自噬体数量增多;激光共聚焦结果显示,SIRT1过表达细胞内绿色荧光淬灭减少、自噬体与自噬溶酶体的融合收到明显抑制,说明SIRT1通过抑制自噬溶酶体的形成,阻断自噬流的进展。结论:缺氧通过抑制SIRT1的表达促进结直肠癌的细胞自噬。  相似文献   

14.
Ca-accumulating formations found in degenerating myotubes of chick embryo by pyroantimonate technique have been identified as membrane bound bodies in the material fixed routinely for electron microscopy. These bodies seem to represent initial stages of a lipid degeneration of membranous structures. It is assumed that calcification of single degenerating subcellular structures may limit spreading necrosis over the whole cell.  相似文献   

15.
Under nutrient-deficient conditions, the yeast S. cerevisiae sequesters its own cytoplasmic components into vacuoles in the form of "autophagic bodies" (Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. J. Cell Biol. 119:301-311). Immunoelectron microscopy showed that two cytosolic marker enzymes, alcohol dehydrogenase and phosphoglycerate kinase, are present in the autophagic bodies at the same densities as in the cytosol, but are not present in vacuolar sap, suggesting that cytosolic enzymes are also taken up into the autophagic bodies. To understand this process, we performed morphological analyses by transmission and immunological electron microscopies using a freeze- substitution fixation method. Spherical structures completely enclosed in a double membrane were found near the vacuoles of protease-deficient mutant cells when the cells were shifted to nutrient-starvation media. Their size, membrane thickness, and contents of double membrane- structures corresponded well with those of autophagic bodies. Sometimes these double membrane structures were found to be in contact with the vacuolar membrane. Furthermore their outer membrane was occasionally seen to be continuous with the vacuolar membrane. Histochemical staining of carbohydrate strongly suggested that the structures with double membranes fused with the vacuoles. These results indicated that these structures are precursors of autophagic bodies, "autophagosomes" in yeast. All the data obtained suggested that the autophagic process in yeast is essentially similar to that of the lysosomal system in mammalian cells.  相似文献   

16.
Autophagic flux can be measured by determining the declining abundance of autophagic substrates such as sequestosome 1 (SQSTM1, better known as p62), which is sequestered in autophagosomes upon its direct interaction with LC3. However, the total amount of p62 results from two opposed processes, namely its synthesis (which can be modulated by some cellular stressors including autophagy inducers) and its degradation. To avoid this problem, we generated a stable cell line expressing a chimeric protein composed by p62 and the HaloTag (?) protein, which serves as a receptor for fluorescent HaloTag (?) ligands. Upon labeling with HaloTag (?) ligands (which form covalent, near-to-undissociable bonds with the Halotag (?) receptor) and washing, the resulting fluorescent labeling is not influenced by de novo protein synthesis, therefore allowing for the specific monitoring of the fusion protein decline without any interference by protein synthesis. We demonstrate that a HaloTag (?) -p62 fusion protein stably expressed in suitable cell lines can be used to monitor autophagy by flow cytometry and automated fluorescence microscopy. We surmise that this system could be adapted to high-throughput applications.  相似文献   

17.
18.
Hashimoto W  He J  Wada Y  Nankai H  Mikami B  Murata K 《Biochemistry》2005,44(42):13783-13794
A nonmotile gram-negative bacterium, Sphingomonas sp. A1, directly incorporates macromolecules such as alginate through a "super-channel" consisting of a pit formed on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. Here, we demonstrate the proteomics-based identification of cell-surface proteins involved in the formation of the pit and/or import of alginate. Cell-surface proteins were prepared from the outer membrane released as vesicles during the conversion of intact cells to spheroplasts. Seven proteins (p1-p7) with acidic isoelectric points were inducibly expressed in the outer membrane of strain A1 cells grown on alginate and showed significant identity with bacterial cell-surface proteins (p1-p4, TonB-dependent outer-membrane transporter; p5 and p6, flagellin; and p7, lipoprotein). Each mutant with a disruption of the p1-p4 or p6 gene showed significant growth retardation in the alginate medium. Flagellin homologues (p5 and p6) were further analyzed because strain A1 forms no flagellum. p5 was found to be uniformly distributed on the cell surface by immunogold-labeling electron microscopy and to exhibit alginate binding with a nanomolar dissociation constant by a surface plasmon resonance sensor. The cell surface of the p6 gene disruptant differed from that of the wild-type strain A1 in that pit formation was incomplete and cell-surface structures shifted from pleats to networks. These results suggest that, distinct from bacterial flagellins constituting a helical filament of flagella, strain A1 cell-surface flagellin homologues function as receptors for alginate and/or regulators of cell-surface structures.  相似文献   

19.
Intranuclear bodies which are spherical in shape are clearly seen by ‘Anoptral’ (negative) phase microscopy in the nucleus of Entamoeba. These bodies vary in size and numbers from cell to cell. With interference microscopy the intranuclear bodies appear as spherical granules in the nucleus of the cell. Their distribution and numbers are again very variable. With electron microscopy the bodies can be clearly seen inside the nucleus. They are always spherical in shape but vary in size from 0·1 to 1·5 μm. They may be empty or contain granular or membranous material. They display the capacity to move out of the nucleus.  相似文献   

20.
Thin sections of hamster kidney tissue cultures were examined by electron microscopy over a 7-day period after infection with Brucella abortus 3183. Numerous bacteria and structures resembling L-forms were present both intracellularly and extracellularly after the first 24 hr of infection. Most intracellular microorganisms were enclosed by a cytoplasmic membrane, but in a few instances no limiting membrane was detected. After 4 to 7 days, fewer microorganisms were present, and most normal-appearing bacteria were intracellular, particularly in antibiotic-treated cultures. Structures typical of Brucella L-forms were extracellular at the latter time intervals. Several structures were observed in cells from infected cultures whose relationship to the infecting organisms is not known. These consisted of various membranous structures within cytoplasmic vacuoles, myelin-like structures surrounding occasional intracellular organisms, and small bodies present within vacuoles and extracellularly. The latter structures observed throughout the experimental period appeared to occur more frequently as the duration of the infection increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号