首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《遗传学报》2020,47(6):301-310
Wnt signaling pathways,including the canonical Wnt/β-catenin pathway,planar cell polarity pathway,and Wnt/Ca~(2+) signaling pathway,play important roles in neural development during embryonic stages.The DVL genes encode the hub proteins for Wnt signaling pathways.The mutations in DVL2 and DVL3 were identified from patients with neural tube defects(NTDs),but their functions in the pathogenesis of human neural diseases remain elusive.Here,we sequenced the coding regions of three DVL genes in 176 stillborn or miscarried fetuses with NTDs or Dandy-Walker malformation(DWM) and 480 adult controls from a Han Chinese population.Four rare mutations were identified:DVL1 p.R558 H,DVL1 p.R606 C,DVL2 p.R633 W,and DVL3 p.R222 Q.To assess the effect of these mutations on NTDs and DWM,various functional analyses such as luciferase reporter assay,stress fiber formation,and in vivo teratogenic assay were performed.The results showed that the DVL2 p.R633 W mutation destabilized DVL2 protein and upregulated activities for all three Wnt signalings(Wnt/β-catenin signaling,Wnt/planar cell polarity signaling,and Wnt/Ca~(2+) signaling) in mammalian cells.In contrast,DVL1 mutants(DVL1 p.R558 H and DVL1 p.R606 C) decreased canonical Wnt/β-catenin signaling but increased the activity of Wnt/Ca~(2+)signaling,and DVL3 p.R222 Q only decreased the activity of Wnt/Ca~(2+) signaling.We also found that only the DVL2 p.R633 W mutant displayed more severe teratogenicity in zebrafish embryos than wild-type DVL2.Our study demonstrates that these four rare DVL mutations,especially DVL2 p.R633 W,may contribute to human neural diseases such as NTDs and DWM by obstructing Wnt signaling pathways.  相似文献   

4.
5.
6.
7.
Recent evidence has suggested that AMPK activators may be applied as therapeutic drugs in suppressing cancer cell growth. However, the molecular mechanism of their suppressive function in cancer cells is still unclear. Here we show that AMPK activators impair cervical cancer cell growth through the reduction of DVL3, a positive regulator in Wnt/β-catenin signaling and an oncogenic player in cervical cancer tumorigenesis. By western blot and immunohistochemical analyses, we demonstrated that DVL3 was frequently upregulated and significantly associated with elevated β-catenin (P = 0.009) and CyclinD1 (P = 0.009) expressions in cervical cancer. Enforced expression of DVL3 elevated β-catenin and augmented cervical cancer cell growth, verifying that DVL3-mediated Wnt/β-catenin activation is involved in cervical cancer oncogenesis. On the other aspect, we noted that the cervical cancer cell growth was remarkably suppressed by AMPK activators and such cell growth inhibition was in concomitant with the reduction of DVL3 protein level in dose- and time-dependent manners. Besides, impaired mTOR signaling activity also reduced DVL3 expression. In contrast, co-treatment with Compound C (AMPK inhibitor) could significantly abrogate metformin induced DVL3 reduction. In addition, co-treatment with AM114 or MG132 (proteosomal inhibitors) could partially restore DVL3 expression under the treatment of metformin. Further in vivo ubiquitination assay revealed that metformin could reduce DVL3 by ubiquitin/proteasomal degradation. To our knowledge, this is the first report showing the probable molecular mechanisms of that the AMPK activators suppress cervical cancer cell growth by impairing DVL3 protein synthesis via AMPK/mTOR signaling and/or partially promoting the proteasomal degradation of DVL3.  相似文献   

8.
9.
Many important regulatory functions are performed by dynamic multiprotein complexes that adapt their composition and activity in response to different stimuli. Here we employ quantitative affinity purification coupled with mass spectrometry to efficiently separate background from specific interactors but add an additional quantitative dimension to explicitly characterize stimulus-dependent interactions. This is accomplished by SILAC in a triple-labeling format, in which pull-downs with bait, with bait and stimulus, and without bait are quantified against each other. As baits, we use full-length proteins fused to the green fluorescent protein and expressed under endogenous control. We applied this technology to Wnt signaling, which is important in development, tissue homeostasis, and cancer, and investigated interactions of the key components APC, Axin-1, DVL2, and CtBP2 with differential pathway activation. Our screens identify many known Wnt signaling complex components and link novel candidates to Wnt signaling, including FAM83B and Girdin, which we found as interactors to multiple Wnt pathway players. Girdin binds to DVL2 independent of stimulation with the ligand Wnt3a but to Axin-1 and APC in a stimulus-dependent manner. The core destruction complex itself, which regulates beta-catenin stability as the key step in canonical Wnt signaling, remained essentially unchanged.  相似文献   

10.
In the canonical Wnt signaling pathway, the translocation of β-catenin is important for the activation of target genes in the nucleus. However, the molecular mechanisms underlying its nuclear localization remain unclear. In the present study, we found IQGAP1 to be a regulator of β-catenin function via importin-β5. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of β-catenin and expression of Wnt target genes during early embryogenesis. Depletion of endogenous importin-β5 associated with IQGAP1 also reduced expression of Wnt target genes and the nuclear localization of IQGAP1 and β-catenin. Moreover, a small GTPase, Ran1, contributes to the nuclear translocation of β-catenin and the activation of Wnt target genes. These results suggest that IQGAP1 functions as a regulator of translocation of β-catenin in the canonical Wnt signaling pathway.  相似文献   

11.
MicroRNAs (miRNAs) are strongly implicated in many cancers, including breast cancer. Recently, microRNA-301a (miR-301a) has been proved to play a substantial role in gastric cancer, but its functions in the context of breast cancer remain unknown. Here we report that miR-301a was markedly upregulated in primary tumor samples from patients with distant metastases and pro-metastatic breast cancer cell lines. Gain-of-function and loss-of-function studies showed that ectopic overexpression of miR-301a promoted breast cancer cell migration, invasion and metastasis both in vitro and in vivo. Notably, Wnt/β-catenin signaling was hyperactivated in metastatic breast cancer cells that express miR-301a, and mediated miR-301a-induced invasion and metastasis. Furthermore, miR-301a directly targeted and suppressed PTEN, one negative regulator of the Wnt/β-catenin signaling cascade. These results demonstrate that miR-301a maintains constitutively activated Wnt/β-catenin signaling by directly targeting PTEN, which promotes breast cancer invasion and metastasis. Taken together, our findings reveal a new regulatory mechanism of miR-301a and suggest that miR-301a might be a potential target in breast cancer therapy.  相似文献   

12.
13.
Breast cancer is a complex heterogeneous disease involving genetic and epigenetic alterations in genes encoding proteins that are components of various signaling pathways. Candidate gene approach have identified association of genetic variants in the Wnt signaling pathway genes and increased susceptibility to several diseases including breast cancer. Due to the rarity of somatic mutations in key genes of Wnt pathway, we investigated the association of genetic variants in these genes with predisposition to breast cancers. We performed a case-control study to identify risk variants by examining 15 SNPs located in 8 genes associated with Wnt signaling. Genotypic analysis of individual locus showed statistically significant association of five SNPs located in β-catenin, AXIN2, DKK3, SFRP3 and TCF7L2 with breast cancers. Increased risk was observed only with the SNP in β-catenin while the other four SNPs conferred protection against breast cancers. Majority of these associations persisted after stratification of the cases based on estrogen receptor status and age of on-set of breast cancer. The rs7775 SNP in exon 6 of SFRP3 gene that codes for either arginine or glycine exhibited very strong association with breast cancer, even after Bonferroni''s correction. Apart from these five variants, rs3923086 in AXIN2 and rs3763511 in DKK4 that did not show any association in the overall population were significantly associated with early on-set and estrogen receptor negative breast cancers, respectively. This is the first study to utilize pathway based approach to identify association of risk variants in the Wnt signaling pathway genes with breast cancers. Confirmation of our findings in larger populations of different ethnicities would provide evidence for the role of Wnt pathway as well as screening markers for early detection of breast carcinomas.  相似文献   

14.
Aberrant activation of the Wnt signaling pathway is a major trait of many human cancers. Due to its vast implications in tumorigenesis and progression, the Wnt pathway has attracted considerable attention at several molecular levels, also with respect to developing novel cancer therapeutics. Indeed, research in Wnt biology has recently provided numerous clues, and evidence is accumulating that the secreted Wnt antagonist Dickkopf-related protein 3 (Dkk-3) and its regulators may constitute interesting therapeutic targets in the most important human cancers. Based on the currently available literature, we here review the knowledge on the biological role of Dkk-3 as an antagonist of the Wnt signaling pathway, the involvement of Dkk-3 in several stages of tumor development, the genetic and epigenetic mechanisms disrupting DKK3 gene function in cancerous cells, and the potential clinical value of Dkk-3 expression/DKK3 promoter methylation as a biomarker and molecular target in cancer diseases.In conclusion, Dkk-3 rapidly emerges as a key player in human cancer with auspicious tumor suppressive capacities, most of all affecting apoptosis and proliferation. Its gene expression is frequently downregulated by promoter methylation in almost any solid and hematological tumor entity. Clinically, evidence is accumulating of Dkk-3 being both a potential tumor biomarker and effective anti-cancer agent. Although further research is needed, re-establishing Dkk-3 expression in cancer cells holds promise as novel targeted molecular tumor therapy.  相似文献   

15.
Nephronophthisis-related ciliopathies (NPHP-RC) are recessive diseases characterized by renal dysplasia or degeneration. We here identify mutations of DCDC2 as causing a renal-hepatic ciliopathy. DCDC2 localizes to the ciliary axoneme and to mitotic spindle fibers in a cell-cycle-dependent manner. Knockdown of Dcdc2 in IMCD3 cells disrupts ciliogenesis, which is rescued by wild-type (WT) human DCDC2, but not by constructs that reflect human mutations. We show that DCDC2 interacts with DVL and DCDC2 overexpression inhibits β-catenin-dependent Wnt signaling in an effect additive to Wnt inhibitors. Mutations detected in human NPHP-RC lack these effects. A Wnt inhibitor likewise restores ciliogenesis in 3D IMCD3 cultures, emphasizing the importance of Wnt signaling for renal tubulogenesis. Knockdown of dcdc2 in zebrafish recapitulates NPHP-RC phenotypes, including renal cysts and hydrocephalus, which is rescued by a Wnt inhibitor and by WT, but not by mutant, DCDC2. We thus demonstrate a central role of Wnt signaling in the pathogenesis of NPHP-RC, suggesting an avenue for potential treatment of NPHP-RC.  相似文献   

16.
17.

Introduction

Wnt signalling has been implicated in stem cell regulation however its role in breast cancer stem cell regulation remains unclear.

Methods

We used a panel of normal and breast cancer cell lines to assess Wnt pathway gene and protein expression, and for the investigation of Wnt signalling within stem cell-enriched populations, mRNA and protein expression was analysed after the selection of anoikis-resistant cells. Finally, cell lines and patient-derived samples were used to investigate Wnt pathway effects on stem cell activity in vitro.

Results

Wnt pathway signalling increased in cancer compared to normal breast and in both cell lines and patient samples, expression of Wnt pathway genes correlated with estrogen receptor (ER) expression. Furthermore, specific Wnt pathway genes were predictive for recurrence within subtypes of breast cancer. Canonical Wnt pathway genes were increased in breast cancer stem cell-enriched populations in comparison to normal breast stem cell-enriched populations. Furthermore in cell lines, the ligand Wnt3a increased whilst the inhibitor DKK1 reduced mammosphere formation with the greatest inhibitory effects observed in ER+ve breast cancer cell lines. In patient-derived metastatic breast cancer samples, only ER-ve mammospheres were responsive to the ligand Wnt3a. However, the inhibitor DKK1 efficiently inhibited both ER+ve and ER-ve breast cancer but not normal mammosphere formation, suggesting that the Wnt pathway is aberrantly activated in breast cancer mammospheres.

Conclusions

Collectively, these data highlight differential Wnt signalling in breast cancer subtypes and activity in patient-derived metastatic cancer stem-like cells indicating a potential for Wnt-targeted treatment in breast cancers.  相似文献   

18.
19.
20.
Osteoporosis is a silent systemic disease that causes bone deterioration, and affects over 10 million people in the US alone. This study was undertaken to develop a potential stem cell therapy for osteoporosis. We have isolated and expanded human dental pulp-derived stem cells (DPSCs), characterized them, and confirmed their multipotential differentiation abilities. Stem cells often remain quiescent and require activation to differentiate and function. Herein, we show that ferutinin activates DPSCs by modulating the Wnt/β-catenin signaling pathway and key osteoblast-secreted proteins osteocalcin and collagen 1A1 both mRNA and protein levels. To confirm that ferutinin modulates the Wnt pathway, we inhibited glycogen synthase kinase 3 (GSK3) and found that protein expression patterns were similar to those found in ferutinin-treated DPSCs. To evaluate the role of ferutinin in epigenetic regulation of canonical Wnt signaling, the pathway molecules Wnt3a and Dvl3 were analyzed using chromatin immunoprecipitation (ChIP)-quantitative PCR approaches. We confirmed that active marks of both H3K9 acetylation and H3K4 trimethylation were significantly enhanced in the promoter sites of the WNT3A and DVL3 genes in DPSCs after addition of ferutinin. These data provide evidence that ferutinin activates and promotes osteogenic differentiation of DPSCs, and could be used as an inducer as a potentially effective stem cell therapy for osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号