首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gonadotropin Hormone Releasing Hormone agonists (GnRHa) produce an acute decline in ovarian hormone production leading to a ‘pseudo’ menopause. This is therapeutically useful in the management of a variety of gynaecological conditions but also serves as a powerful model to study the effects of ovarian hormones on cognition. Animal and human behavioral studies report that memory is particularly sensitive to the effects ovarian hormone suppression (e.g. post GnRHa). Further, it has recently been reported that ovariectomy in young women increases the risk of cognitive impairment in later life. However, the underlying brain networks and/or stages of memory processing that might be modulated by acute ovarian hormone suppression remain poorly understood. We used event-related fMRI to examine the effect of GnRHa on visual working memory (VWM). Neuroimaging outcomes from 17 pre-menopausal healthy women were assessed at baseline and 8 weeks after GnRHa treatment. Seventeen matched wait-listed volunteers served as the control group and were assessed at similar intervals during the late follicular phase of the menstrual cycle. We report GnRHa was associated with attenuation of left parahippocampal (BA 35) and middle temporal gyri (BA 21 ,22, 39) activation, with a significant group-by-time interaction at left precuneus (BA 7) and posterior cingulate cortex (PCC) (BA 31) at encoding, and with cerebellar activation at recognition in the context of unimpaired behavioral responses. Our study suggests that acute ovarian hormone withdrawal following GnRHa, and perhaps at other times, (e.g. following surgical menopause and postpartum) alters the neural circuitry underlying performance of VWM.  相似文献   

2.
Women frequently complain of memory problems at times in their reproductive lives that are associated with changes in estrogen concentration (e.g. around menopause and childbirth). Further, behavioural studies suggest that memory performance may fluctuate across the menstrual cycle. For example, performance on verbal tasks has been reported to be greatest during phases associated with high estrogen concentrations whereas the opposite has been reported with visuo-spatial tasks. The biological basis of these reported effects remains poorly understood. However, brain imaging studies into the effects of estrogen therapy in postmenopausal women suggest that estrogen modulates the metabolism and function of brain regions sub-serving memory. Furthermore, we have recently reported that acute suppression of ovarian function in young women (with a Gonadotropin Hormone Releasing Hormone agonist) is associated with decreased activation in left prefrontal cortex, particularly the left inferior frontal gyrus (LIFG), during successful verbal memory encoding. We therefore investigated whether physiological variation in plasma estradiol concentration is associated with differences in activity of the LIFG during successful verbal encoding. We hypothesised that higher plasma concentrations of estradiol would be associated with increased brain activity at the LIFG and improved recall performance. Although we did not find a significant relationship between plasma estradiol concentration and verbal recall performance, we report a positive correlation between brain function and estradiol concentration at the LIFG.  相似文献   

3.
Ovarian hormone decline after menopause may influence cognitive performance and increase the risk for Alzheimer's disease (AD) in women. Amyloid-β peptide (Aβ) has been proposed to be the primary cause of AD. In this study, we examined whether ovariectomy (OVX) could affect the levels of cofactors Aβ-binding alcohol dehydrogenase (ABAD) and receptor for advanced glycation endproducts (RAGE), which have been reported to potentiate Aβ-mediated neuronal perturbation, in mouse hippocampus, correlating with estrogen and Aβ levels. Female ICR mice were randomly divided into ovariectomized or sham-operated groups, and biochemical analyses were carried out at 5 weeks after the operation. OVX for 5 weeks significantly decreased hippocampal 17β-estradiol level, while it tended to reduce the hormone level in serum, compared with the sham-operated control. In contrast, OVX did not affect hippocampal Aβ1-40 level, although it significantly increased serum Aβ1-40 level. Furthermore, we demonstrated that OVX increased hippocampal ABAD level in neurons, but not astrocytes, while it did not affect RAGE level. These findings suggest that the expression of neuronal ABAD depends on estrogen level in the hippocampus and the increase in serum Aβ and hippocampal ABAD induced by ovarian hormone decline may be associated with pre-stage of memory deficit in postmenopausal women and Aβ-mediated AD pathology.  相似文献   

4.
Evidence indicates that the degeneration of basal forebrain cholinergic neurons may represent an important factor underlying the progressive cognitive decline characterizing Alzheimer’s disease (AD). However, the nature of the relationship between cholinergic depletion and AD is not fully elucidated. This study aimed at clarifying some aspects of the relation existing between deficits in cerebral energy metabolism and degeneration of cholinergic system in AD, by investigating the neuronal metabolic activity of several cortical areas after depletion of basal forebrain cholinergic neurons. In cholinergically depleted rats, we evaluated the neuronal metabolic activity by assaying cytochrome oxidase (CO) activity in frontal, parietal and posterior parietal cortices at four different time-points after unilateral injection of 192 IgG-saporin in the nucleus basalis magnocellularis. Unilateral depletion of cholinergic cells in the basal forebrain induced a bilateral decrease of metabolic activity in all the analyzed areas. Frontal and parietal cortices showed decreased metabolic activity even 3 days after the lesion, when the cholinergic degeneration was still incomplete. In posterior parietal cortex metabolic activity decreased only 7 days after the lesion. The possible molecular mechanisms underlying these findings were also investigated. Real-time PCR showed an increase of CO mRNA levels at 3, 7 and 15 days after the lesion both in frontal and parietal cortices, followed by normalization at 30 days. Western Blot analysis did not show any change in CO protein levels at any time-point after the lesion. Our findings support a link between metabolic deficit and cholinergic hypofunctionality characterizing AD pathology. The present model of cholinergic hypofunctionality provides a useful means to study the complex mechanisms linking two fundamental and interrelated phenomena characterizing AD from the early stages.  相似文献   

5.
Platelets participate in normal and pathological thrombotic processes. Hormone replacement in postmenopausal women is associated with increase risk for thrombosis. However, little is known regarding how platelets are affected by hormonal status. Nitric oxide (NO) modulates platelet functions and is modulated by hormones. Therefore, the present study was designed to determine how loss of ovarian hormones changes expression of estrogen receptors and regulatory proteins for NO synthase (NOS) in platelets. Estrogen receptors (ER alpha and ER beta), NOS, heat shock proteins 70 and 90 (HSP70 and HSP90), caveolin-1, -2, and -3, calmodulin, NOS activity, and cGMP were analyzed in a lysate of platelets from gonadally intact and ovariectomized female pigs. Expression of ER beta and ER alpha receptors, endothelial NOS (eNOS), HSP70, and HSP90 increased with ovariectomy. NOS activity and cGMP also increased; calmodulin was unchanged. Caveolins were not detected. These results suggest that ovarian hormones influence expression of estrogen receptors and eNOS in platelets. Changes in estrogen receptors and NOS could affect platelet aggregation in response to hormone replacement.  相似文献   

6.
Cognitive changes that occur during mid-life and beyond are linked to both aging and the menopause transition. Studies in women suggest that the age at menopause onset can impact cognitive status later in life; yet, little is known about memory changes that occur during the transitional period to the postmenopausal state. The 4-vinylcyclohexene diepoxide (VCD) model simulates transitional menopause in rodents by depleting the immature ovarian follicle reserve and allowing animals to retain their follicle-deplete ovarian tissue, resulting in a profile similar to the majority of perimenopausal women. Here, Vehicle or VCD treatment was administered to ovary-intact adult and middle-aged Fischer-344 rats to assess the trajectory of cognitive change across time with normal aging and aging with transitional menopause via VCD-induced follicular depletion, as well as to evaluate whether age at the onset of follicular depletion plays a role in cognitive outcomes. Animals experiencing the onset of menopause at a younger age exhibited impaired spatial memory early in the transition to a follicle-deplete state. Additionally, at the mid- and post- follicular depletion time points, VCD-induced follicular depletion amplified an age effect on memory. Overall, these findings suggest that age at the onset of menopause is a critical parameter to consider when evaluating learning and memory across the transition to reproductive senescence. From a translational perspective, this study illustrates how age at menopause onset might impact cognition in menopausal women, and provides insight into time points to explore for the window of opportunity for hormone therapy during the menopause transition period. Hormone therapy during this critical juncture might be especially efficacious at attenuating age- and menopause- related cognitive decline, producing healthy brain aging profiles in women who retain their ovaries throughout their lifespan.  相似文献   

7.
Endocrine control of follicular growth was determined by observing the left ovary of prepubertal calves previously treated with a potent GnRH agonist for 13 days. The ovarian response to hormonal stimulation was determined using the right ovaries of the same animals. Three-month-old crossbred calves were assigned to one of the two following treatment groups: 1) saline control for 13 days, with purified porcine FSH for the last 3 days (n = 5); and 2) GnRHa for 13 days, with purified porcine FSH for the final 3 days (n = 5). The left ovaries were removed from all calves after 10 days, and the right ovaries were removed at the end of treatment. Plasma concentrations of FSH, LH and oestradiol-17 beta were followed up during the GnRHa and pFSH treatments. The maximum macroscopic diameter of the F1 follicle, as determined by daily ultrasonography, did not differ between GnRHa-treated calves (from 6.6 to 10.4 mm) and the saline control calves (from 6.7 to 10.3 mm). Histological analysis of the ovaries showed that the number of follicles > 0.40 mm in diameter varied greatly for calves of the two groups (from 11 to 220 at 10 days). GnRHa significantly increased the mean number of follicles (total and nonatretic) of size class > 5.4 mm as compared to saline control calves (P < 0.05). The FSH treatment significantly increased the mean number of follicles 3.00-5.4 and > 5.4 mm in diameter (P < 0.05), with no change in the number of follicles smaller than 3.00 mm. The rate of atresia of large follicles (3.01-5.40 mm) was significantly reduced by purified porcine FSH treatment in both groups (P < 0.05). In no case did the GnRHa induce ovulation or luteinization of follicles. The LH and FSH concentrations increased transiently after GnRHa treatment on the first day, but afterwards, both hormones increased to only one sixth of what was observed after the initial GnRHa injection treatment. This increase in LH and FSH was observed 1 h after GnRHa treatment on each consecutive day of the experiment and were significantly different in the control group (0 h versus 1 h versus 2 h x saline control versus GnRH agonists groups; P < 0.01). During the superovulatory treatment, FSH concentrations peaked at around 0.70 ng.mL-1 in both saline- and GnRHa-treated groups on the first day but on the last day of surovulatory treatment, FSH concentrations were higher in GnRHa agonist-treated calves than in the control calves (day 11 versus day 12 versus day 13 x saline control versus GnRH agonist treatment groups; P < 0.01). LH profiles were unchanged by surovulatory treatment. Concentrations of oestradiol-17 beta increased significantly over the three days (P < 0.001) of the superovulatory treatments in both groups (P < 0.01). These results indicate that GnRH agonist treatment allows recruited antral follicles to pursue their growth during the early selection process via sustained FSH and LH secretion allowing more than a single large follicle to maintain their growth without going to atresia.  相似文献   

8.
As many chemotherapy regimens induce follicular depletion, fertility preservation became a major concern in young cancer patients. By maintaining follicles at the resting stage, gonadotropin-releasing hormone analogues (GnRHa) were proposed as an ovarian-protective option during chemotherapy. However, their efficacy and mechanisms of action remain to be elucidated. Mice were dosed with cyclophosphamide (Cy, 100–500mg/kg i.p) to quantify follicular depletion and evaluate apoptosis at different times. We observed a dose-dependent depletion of the follicular reserve within 24 hours after Cy injection with a mean follicular loss of 45% at the dose of 200mg/kg. Apoptosis occurs in the granulosa cells of growing follicles within 12 hours after Cy treatment, while no apoptosis was detected in resting follicles suggesting that chemotherapy acutely affects both resting and growing follicles through different mechanisms. We further tested the ability of both GnRH agonist and antagonist to inhibit oestrus cycles, follicular growth and FSH secretion in mice and to protect ovarian reserve against chemotherapy. Although GnRHa were efficient to disrupt oestrus cycles, they failed to inhibit follicular development, irrespective of the doses and injection sites (sc or im). Around 20% of healthy growing follicles were still observed during GnRHa treatment and serum FSH levels were not reduced either by antagonist or agonist. GnRHa had no effect on Cy-induced follicular damages. Thus, we showed that GnRHa were not as efficient at inhibiting the pituitary-gonadal axis in mice as in human. Furthermore, the acute depletion of primordial follicles observed after chemotherapy does not support the hypothesis that the ovary may be protected by gonadotropin suppression.  相似文献   

9.
Effects of estrogen therapy on cognitive performance appear to diminish with age and time following the loss of ovarian function. We hypothesize that this is due to a reduction in basal forebrain cholinergic function and that treatment with a cholinergic enhancer can reverse the effect. This study tested whether combining the cholinesterase inhibitor donepezil with estradiol treatment can enhance/restore estradiol effects on cognitive performance in young ovariectomized rats with selective lesions of septal cholinergic neurons. 192IgG-saporin was injected directly into the medial septum to produce selective cholinergic lesions. Rats were then treated with donepezil (Don, daily injections of 3 mg/kg/day, i.p.) or vehicle, and then with 17β-estradiol (E2, administered by silastic capsule implanted s.c.) or an empty capsule. Rats were trained on a delayed matching-to-position (DMP) T-maze task which previous studies have shown is sensitive to ovariectomy and estrogen replacement. Results show that neither estradiol nor donepezil alone significantly enhanced acquisition of the DMP task in rats with cholinergic lesions. Combination therapy was effective, however, depending on the severity of the lesion. Don + E2 significantly enhanced acquisition of the task in rats with partial lesions (< 50% loss of cholinergic neurons), but not in rats with severe lesions. This effect was due largely to a reduction in perseverative behavior. Don + E2 also improved working memory in rats with partial lesions, as evidenced by significantly better performance than controls during increased intertrial delays. These findings suggest that even partial loss of septal cholinergic neurons can reduce effects of estrogen therapy on cognitive performance, and demonstrate that combining a cholinesterase inhibitor with estrogen therapy can help to restore beneficial effects on performance. We propose that combination therapy may have similar beneficial effects in women, particularly in older women who have not used estrogen therapy for many years and are beginning to show signs of cognitive impairment or early Alzheimer's disease.  相似文献   

10.
The age-related decline in fat-free mass is accelerated in women after menopause. The role of ovarian hormone deficiency in the regulation of fat-free mass, however, has not been clearly defined. To address this question, we examined the effect of ovarian hormone suppression on whole body protein metabolism. Whole body protein breakdown, oxidation, and synthesis were measured using [(13)C]leucine in young, healthy women with regular menstrual patterns before and after 2 mo of treatment with gonadotropin-releasing hormone agonist (GnRHa; n = 6) or placebo (n = 7). Protein metabolism was measured under postabsorptive and euglycemic-hyperinsulinemic-hyperaminoacidemic conditions. Ovarian suppression did not alter whole body or regional fat-free mass or adiposity. In the postabsorptive state, GnRHa administration was associated with reductions in protein breakdown and synthesis (P < 0.05), whereas no change in protein oxidation was noted. Under euglycemic-hyperinsulinemic-hyperaminoacidemic conditions, a similar reduction (P < 0.05) in protein synthesis and breakdown was noted, whereas, protein oxidation increased (P < 0.05) in the placebo group. Testosterone, steroid hormone precursors, insulin-like growth factor I, and their respective binding proteins were not altered by GnRHa administration, and changes in these hormones over time were not associated with GnRHa-induced alterations in protein metabolism, suggesting that changes in protein turnover are not due to an effect of ovarian suppression on other endocrine systems. Our findings provide evidence that endogenous ovarian hormones participate in the regulation of protein turnover in women.  相似文献   

11.
《Journal of Physiology》1998,92(3-4):293-298
Cholinergic neurons in the nucleus basalis of Meynert (nbM) receive cholinergic, GABAergic and monoaminergic synapses. Only few of these neurons display the sort of intense m2 immunoreactivity that would be expected if they were expressing m2 as their presynaptic autoreceptor. The depletion of cortical m2 in Alzheimer's disease (AD) appears to reflect the loss of presynaptic autoreceptors located on incoming axons from the nucleus basalis of Meynert (nbM) and also the loss of postsynaptic receptors located on a novel group of nitric oxide producing interstitial neurons in the cerebral cortex. The defect of cholinergic transmission in AD may enhance the neurotoxicity of amyloid β, leading to a vicious cycle which can potentially accelerate the pathological process. Because acetylcholine plays a critical role in regulating axonal growth and synaptic remodeling, the cholinergic loss in AD can perturb cortical plasticity so as to undermine the already fragile compensatory reserve of the aging cerebral cortex.  相似文献   

12.
The effects of administration of gonadotropin-releasing hormone agonist (GnRHa) on proliferation and apoptosis of male germ cells were evaluated on Atlantic bluefin tuna (Thunnus thynnus L.) reared in captivity. Fish (n = 19) were treated with a sustained-release delivery system loaded with GnRHa during the natural spawning season of 2004 and 2005 (June–July). Untreated Control fish (n = 17) and adult wild spawners were used for comparison. Fish were sacrificed 2–8 d after GnRHa implantation and body weight and gonad weight were recorded, and gonads and blood were taken. Germ cell proliferation and apoptosis were evaluated through the immunohistochemical detection of proliferating cell nuclear antigen (PCNA) and the terminal deoxynucleotidyl transferase-mediated d’UTP nick end labelling (TUNEL) method, respectively. Plasma 11 ketotestosterone (11-KT) levels were measured using an ELISA method. Mean gonado-somatic index and seminiferous lobule diameter did not differ between GnRHa-treated and Control fish, and were significantly lower in captive-reared individuals than in wild spawners. Significant increases in 11-KT plasma levels and spermatogonial mitosis, along with a reduction of germ cell apoptosis were demonstrated in GnRHa-treated fish compared to Controls. The results suggest that GnRHa administration was effective in enhancing germ cell proliferation and reducing apoptosis in captive males through the stimulation of luteinizing hormone (LH) release and testicular 11-KT production.  相似文献   

13.
Reduced androgen levels in aged men and women might be risk factors for age-related cognitive decline and Alzheimer's disease (AD). Ongoing clinical trials are designed to evaluate the potential benefit of estrogen in women and of testosterone in men. In this review, we discuss the potential beneficial effects of androgens and androgen receptors (ARs) in males and females. In addition, we discuss the hypothesis that AR interacts with apolipoprotein (apoE)4, encoded by epsilon4 and a risk factor for age-related cognitive decline and AD, and the potential consequences of this interaction.  相似文献   

14.
SUMMARY 1. Alzheimer’s disease (AD) is pathologically defined by the deposition of amyloid peptide and neurofibrillary tangles and is characterized by a progressive loss of cognition and memory function, due to marked cortical cholinergic depletion.2. Cholinergic cortical innervation is provided by basal forebrain cholinergic neurons. The neurotrophin Nerve Growth Factor (NGF) promotes survival and differentiation of basal forebrain cholinergic neurons.3. This assertion has been at the basis of the hypothesis developed in the last 20 years, whereby NGF deprivation would be one of the factor involved in the etiology of sporadic forms of AD.4. In this review, we shall summarize data that lead to the production and characterization of a mouse model for AD (AD11 anti-NGF mice), based on the expression of transgenic antibodies neutralizing NGF. The AD-like phenotype of AD11 mice will be discussed on the basis of recent studies that have posed NGF and its precursor pro-NGF back to the stage of AD-like neurodegeneration, showing the involvement of the precursor pro-NGF in one of the cascades leading to AD neurodegeneration.  相似文献   

15.
Alzheimer's Disease (AD) is described as a degenerative disease of the central nervous system characterized by a noticeable cognitive decline defined by a loss of memory and learning ability, together with a reduced ability to perform basic activities of daily living. In the brain of an AD patients is the dramatic decrease in cholinergic innervation in the cortex and hippocampus due to the loss of neurons in the basal forebrain. The above findings led to the development of the cholinergic hypothesis, which proposes that the cognitive loss associated with AD is related to decreased cortical cholinergic neurotransmission. In brain of Alzheimer's patient's one ascertained presence of neuritic plaques containing the beta-amyloid peptide and protein tau. Biochemical and genetics studies implicated a central role for beta-amyloid in the pathological cascade of events in AD. The most therapeutic strategies in AD have been directed to two main targets: the beta-amyloid peptide and the cholinergic neurotransmission. The first approach is to act on the amyloid precursor protein (APP) processing. The second main approach is to slow of decline of neuronal degeneration or increasing cholinergic transmission. Diagnosis of AD is very difficult and to date no specific diagnostic tests of the disease are available. Intellectual function testing to determine the degree of cognitive status during routine medical examination is a useful supplementary method of diagnosing dementia. The permissible result, come down from radiopharmacy, which is an integral part of a nuclear medicine. A radiopharmaceutical may be defined as a pharmaceutical substance containing radioactive atoms. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are capable of mapping the distribution of radionuclides in three dimensions, producing maps of brain biochemical and physiological processes. The techniques are reasonably sensitive and specific in differentiating AD from other dementias.  相似文献   

16.
1. Alzheimer's disease (AD) is pathologically defined by the deposition of amyloid peptide and neurofibrillary tangles and is characterized by a progressive loss of cognition and memory function, due to marked cortical cholinergic depletion. 2. Cholinergic cortical innervation is provided by basal forebrain cholinergic neurons. The neurotrophin Nerve Growth Factor (NGF) promotes survival and differentiation of basal forebrain cholinergic neurons. 3. This assertion has been at the basis of the hypothesis developed in the last 20 years, whereby NGF deprivation would be one of the factor involved in the etiology of sporadic forms of AD. 4. In this review, we shall summarize data that lead to the production and characterization of a mouse model for AD (AD11 anti-NGF mice), based on the expression of transgenic antibodies neutralizing NGF. The AD-like phenotype of AD11 mice will be discussed on the basis of recent studies that have posed NGF and its precursor pro-NGF back to the stage of AD-like neurodegeneration, showing the involvement of the precursor pro-NGF in one of the cascades leading to AD neurodegeneration.  相似文献   

17.
18.
Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by memory and cognitive loss, the formation of senile plaques containing amyloid-beta (Abeta) peptide, degeneration of the cholinergic neurons and the development of neurofibrillary tangles. The build-up of Abeta is considered to be a central feature in the pathogenesis of AD. However, other critical molecular and neurochemical alterations too occur, such as a cholinergic dysfunction. As concerns the pathomechanism of the disease, both the amyloid cascade hypothesis and the cholinergic hypothesis of AD are widely accepted. This review surveys recent in vitro and in vivo experimental evidence relating to these two hypotheses. Bidirectional pathways linking them as regards the cholinergic neurotoxicity of Abeta and the regulatory mechanisms of cholinergic receptor activation or enzyme inhibition in the processing of the amyloid precursor protein are also discussed. Further work is warranted to elucidate the exact effects in the interactions between the cholinergic and amyloid hypotheses of the candidate drugs used in AD therapy.  相似文献   

19.
Therapy advances are constantly improving survival rates of cancer patients, however the toxic effects of chemotherapy drugs can seriously affect patients’ quality of life. In women, fertility and premature ovarian endocrine dysfunction are of particular concern. It is urgently we find methods to preserve or reconstruct ovarian function for these women. This study compares GnRHa treatment with ovarian tissue cryopreservation and orthotopic transplantation in a chemotherapy-induced ovarian damage murine model. 56 inbred Lewis rats were divided into 4 treatment groups: Saline control (group I); cyclophosphamide only (group II); cyclophosphamide plus GnRHa (group III); cyclophosphamide and grafting of thawed cryopreserved ovaries (group IV). Body weight, estrous cycle recovery time, ovarian weight, morphology and follicle count, as well as breeding and fertility were compared among groups. Only group IV was able to restore to normal body weight by the end of the observation period and resumed normal estrous cycles in a shorter time compared to other treatment groups. There was a decrease in primordial follicles in all treatment groups, but group III had the greatest reduction. Although, there was no difference in pregnancy, only one animal littered normal pups in group II, none littered in group III and four littered in group IV. Thus, cryopreservation and orthotopic transplantation of ovarian tissue can restore the fertility of rats subjected to chemotherapy in a manner that is superior to GnRHa treatment. We also observed increased rates of hepatic, splenic and pulmonary haemorrhage in group III, suggesting there may be synergistic toxicity of GnRHa and cyclophosphamide.  相似文献   

20.
Ovarian hormones are associated with binge eating in women, however findings are limited by the lack of experimental control inherent in human studies. Animal research that manipulates ovarian hormone status and examines individual differences in extreme binge eating proneness is needed to model clinical phenotypes in humans and to confirm causal effects. The purpose of this study was to examine the effects of adult ovariectomy on overall binge eating risk and extreme binge eating phenotypes using the binge eating resistant (BER)/binge eating prone (BEP) rat model. We predicted that palatable food consumption would significantly increase after ovariectomy in all rats because ovarian hormones generally suppress food intake. If differences in responsiveness to ovarian hormones underlie BER/BEP phenotypes, then differences in binge eating between BER and BEP rats would be eliminated or diminished after ovariectomy. Changes in palatable food (PF) intake were compared in BER and BEP rats before and after ovariectomy in two samples of adult females. Findings were highly similar in the two samples. PF intake increased significantly following ovariectomy in all rats. However, BEP rats consistently consumed larger amounts of PF than BER rats, both before and after ovariectomy. The consistency of findings across two samples of rats provides strong support for activational effects of ovarian hormones on binge eating. However, the immunity of extreme binge eating phenotypes to ovarian hormone ablation suggests that other, earlier mechanisms (e.g., organizational hormone effects or hormone-independent effects) determine the expression of binge eating phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号