首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient global ischemia induces selective, delayed neuronal death in the hippocampal CA1 and delayed cognitive deficits. Estrogen treatment ameliorates hippocampal injury associated with global ischemia. Although much is known about the impact of estrogen on neuronal survival, relatively little is known about its impact on functional outcome assessed behaviorally. We investigated whether long-term estradiol (21-day pellets implanted 14 days prior to ischemia) or acute estradiol (50 μg infused into the lateral ventricles immediately after ischemia) attenuates ischemia-induced cell loss and improves visual and spatial working memory in ovariectomized female rats. Global ischemia significantly impaired visual and spatial memory, assessed by object recognition and object placement tests at 6-9 days. Global ischemia did not affect locomotion, exploration, or anxiety-related behaviors, assessed by an open-field test at 6 days. Long-term estradiol prevented the ischemia-induced deficit in visual working memory, maintaining normal performance in tests with retention intervals of up to 1 h. Long-term estradiol also prevented ischemia-induced deficits in spatial memory tests with short (1 and 7 min), but not longer (15 min), retention intervals. Acute estradiol significantly improved visual memory assessed with short retention intervals, but did not prevent deficits in spatial memory. Acute estradiol significantly increased the number of surviving CA1 neurons, assessed either at 7 days after ischemia or after the completion of behavioral testing 9 days after ischemia. In contrast, chronic estradiol did not reduce CA1 cell death 9 days after ischemia. Thus, long-term estradiol at near physiological levels and acute estradiol administered after ischemic insult improve functional recovery after global ischemia. These findings have important implications for intervention in the neurological sequellae associated with global ischemia.  相似文献   

2.
Cardiopulmonary arrest is a leading cause of death and disability in the United States that usually occurs in the aged population. Cardiac arrest (CA) induces global ischemia, disrupting global cerebral circulation that results in ischemic brain injury and leads to cognitive impairments in survivors. Ischemia-induced neuronal damage in the hippocampus following CA can result in the impairment of cognitive function including spatial memory. In the present study, we used a model of asphyxial CA (ACA) in nine month old male Fischer 344 rats to investigate cognitive and synaptic deficits following mild global cerebral ischemia. These experiments were performed with the goals of 1) establishing a model of CA in nine month old middle-aged rats; and 2) to test the hypothesis that learning and memory deficits develop following mild global cerebral ischemia in middle-aged rats. To test this hypothesis, spatial memory assays (Barnes circular platform maze and contextual fear conditioning) and field recordings (long-term potentiation and paired-pulse facilitation) were performed. We show that following ACA in nine month old middle-aged rats, there is significant impairment in spatial memory formation, paired-pulse facilitation n dysfunction, and a reduction in the number of non-compromised hippocampal Cornu Ammonis 1 and subiculum neurons. In conclusion, nine month old animals undergoing cardiac arrest have impaired survival, deficits in spatial memory formation, and synaptic dysfunction.  相似文献   

3.
Estradiol can act to protect against hippocampal damage resulting from transient global ischemia, but little is known about the functional consequences of such neuroprotection. The present study examines whether acute estradiol administered prior to the induction of transient global ischemia protects against hippocampal cell death and deficits in performance on a spatial learning task. Ovariectomized female rats were primed with estradiol benzoate or oil vehicle 48 and 24 h prior to experiencing one of three durations of 4-vessel occlusion (0, 5, or 10 min). Performance on the cued and hidden platform versions of the Morris water maze was assessed 1 week following ischemia. On the cued platform task, neither hormone treatment nor ischemia significantly influenced acquisition. When tested on the hidden platform task, however, oil-treated rats exhibited impairments in spatial learning after either 5 or 10 min of ischemia while estradiol-treated rats showed no impairments after 5 min of ischemia and only mild impairments after 10 min of ischemia. Immediately following behavioral testing, rats were perfused and survival of CA1 pyramidal cells was assessed. Ischemia was associated with the loss of CA1 pyramidal cells but rats that received estradiol prior to ischemia showed less severe damage. Furthermore, the extent of cell loss was correlated with degree of spatial bias expressed on a probe trial following hidden platform training. These findings indicate that acute exposure to estradiol prior to ischemia is both neuroprotective and functionally protective.  相似文献   

4.
In the present study, to determine whether aging could increase the vulnerability of the brain to estrogen withdrawal-induced mitochondrial dysfunction, we measured the cytochrome c oxidase (COX) activity and mitochondrial adenosine triphosphate (ATP) content in hippocampi of 2 groups of ovariectomized (OVX) Wistar rats aged 2 months (young) and 9 months (middle-aged), respectively. In addition, effects of genistein and estradiol benzoate (EB) were tested also. We observed only a transient alteration of COX activity and mitochondrial ATP content in hippocampi of young OVX rats but a prolonged lowering of COX activity and mitochondrial ATP content in hippocampi of middle-aged OVX rats. This suggested that with aging compensatory mechanisms of mitochondrial function were attenuated, thus exacerbated estrogen withdrawal-induced mitochondrial dysfunction in hippocampi. Significantly, EB/genistein treatment reversed this estrogen withdrawal-induced mitochondrial dysfunction in both young and middle-aged rats suggesting that genistein may be used as a substitute for estradiol to prevent age-related disease such as Alzheimer’s disease in post-menopausal females.  相似文献   

5.
Exogenous administration of estrogen has been shown to significantly reduce ischemia-induced neuronal degeneration. However, the long-term impact of such treatment on neuronal protection and functional recovery remain largely unknown. The present study assessed the effects of a 15-day pretreatment with 17beta-estradiol on memory deficits and neuronal damage up to 6 months following a 10-min global ischemia in rats. Four groups of ovariectomized female rats [sham-operated and ischemic rats receiving a 15-day pretreatment of either the vehicle or 17beta-estradiol (100 microg/kg)] were tested. The 8-arm radial maze and object recognition tests served to evaluate the impact of 17beta-estradiol treatment on ischemia-induced spatial and recognition memory impairments, respectively. Testing in the radial maze was initiated at two distinct time intervals following reperfusion (7 and 120 days) to evaluate changes in memory functions over time. Our findings revealed long-lasting neuroprotective effects of 17beta-estradiol treatment on hippocampal CA1 pyramidal cells in ovariectomized ischemic rats (43.5% greater neuronal survival than observed in vehicle-treated ischemic animals). Importantly, this neuronal protection translated into significant improvements of recognition and spatial memory functions in estradiol-treated ischemic rats.  相似文献   

6.
This study investigates the association of ischemia-induced spatial memory impairment to alterations of the HPA axis and noradrenergic activation post insult. Experiment 1 characterized the effects of 10 min forebrain ischemia on corticosterone (CORT) secretion following ischemia and in response to spatial memory assessment in the Barnes maze, as well as the impact of pre-ischemia treatment with the glucocorticoid inhibitor metyrapone (175 mg/kg; s.c.). The results showed that cerebral ischemia represents a significant physiological stressor that upregulated CORT secretion 1, 24 and 72 h post-ischemia but not at 7 days. In response to testing in the Barnes maze ischemic animals showed elevated CORT secretion simultaneously with spatial memory deficits. The single dose of metyrapone attenuated the ischemia-induced adrenocortical hyper-responsiveness and subsequent memory deficits despite not providing neuroprotection in the hippocampal CA1 pyramidal cells. To complement these findings, we examined whether norepinephrine which provides positive feedback to the HPA axis and is upregulated following brain ischemia could influence memory performance at delayed intervals after ischemia. Experiment 2 demonstrated that pre-testing administration of the alpha2-adrenoceptor agonist clonidine (.04 mg/kg, s.c.) attenuated ischemia-induced working memory impairments in a radial maze while opposite effects were obtained with the antagonist yohimbine (.3 mg/kg, s.c.). Post-testing administration of clonidine produced spatial reference memory impairments in ischemic rats. The findings from the current study demonstrate increased sensitization and responsiveness of systems regulating stress hormones at long intervals post ischemia. Importantly, we demonstrate that these effects contribute to post ischemic cognitive impairments which can be attenuated pharmacologically even in the presence of hippocampal degeneration at time of testing.  相似文献   

7.

Background

Pretreatment with 17β-estradiol (E2) is profoundly neuroprotective in young animals subjected to focal and global ischemia. However, whether E2 retains its neuroprotective efficacy in aging animals, especially when administered after brain insult, is largely unknown.

Methodology/Principal Findings

We examined the neuroprotective effects of E2 and two agonists that bind to non-classical estrogen receptors, G1 and STX, when administered after ischemia in middle-aged rats after prolonged ovarian hormone withdrawal. Eight weeks after ovariectomy, middle-aged female rats underwent 10 minutes of global ischemia by four vessel occlusion. Immediately after reperfusion, animals received a single infusion of either E2 (2.25 µg), G1 (50 µg) or STX (50 µg) into the lateral ventricle (ICV) or a single systemic injection of E2 (100 µg/kg). Surviving pyramidal neurons in the hippocampal CA1 were quantified 1 week later. E2 and both agonists that target non-classical estrogen receptors (G1 and STX) administered ICV at the time of reperfusion provided significant levels of neuroprotection, with 55–60% of CA1 neurons surviving vs 15% survival in controls. A single systemic injection of a pharmacological dose of E2 also rescued approximately 50% of CA1 pyramidal neurons destined to die. To determine if E2 and G1 have similar mechanisms of action in hippocampal neurons, we compared the ability of E2 and G1 to modify CA1 pyramidal neuron responses to excitatory inputs from the Schaffer collaterals recorded in hippocampal slices derived from female rats not subjected to global ischemia. E2 and G1 (10 nM) significantly potentiated pyramidal neuron responses to excitatory inputs when applied to hippocampal slices.

Conclusions/Significance

These findings suggest (1) that middle-aged female rats retain their responsiveness to E2 even after a long period of hormone withdrawal, (2) that non-classical estrogen receptors may mediate the neuroprotective actions of E2 when given after ischemia, and (3) that the neuroprotective efficacy of estrogens may be related to their modulation of synaptic activity in hippocampal slices.  相似文献   

8.
The potential neuroprotective role of sex hormones in chronic neurodegenerative disorders and acute brain ischemia following cardiac arrest and stroke is of a great therapeutic interest. Long-term pretreatment with estradiol and other estrogens affords robust neuroprotection in male and female rodents subjected to focal and global ischemia. However, the receptors (e.g., cell surface or nuclear), intracellular signaling pathways and networks of estrogen-regulated genes that intervene in neuronal apoptosis are as yet unclear. We have shown that estradiol administered at physiological levels for two weeks before ischemia rescues neurons destined to die in the hippocampal CA1 and ameliorates ischemia-induced cognitive deficits in ovariectomized female rats. This regimen of estradiol treatment involves classical intracellular estrogen receptors, transactivation of IGF-1 receptors and stimulation of the ERK/MAPK signaling pathway, which in turn maintains CREB activity in the ischemic CA1. We also find that a single, acute injection of estradiol administrated into the brain ventricle immediately after an ischemic event reduces both neuronal death and cognitive deficits. Because these findings suggest that hormones could be used to treat patients when given after brain ischemia, it is critical to determine whether the same or different pathways mediate this form of neuroprotection. We find that an agonist of the membrane estrogen receptor GPR30 mimics short latency estradiol facilitation of synaptic transmission in the hippocampus. Therefore, we are testing the hypothesis that GPR30 may act together with intracellular estrogen receptors to activate cell signaling pathways to promote neuron survival after global ischemia.  相似文献   

9.
Lee B  Choi Y  Kim H  Kim SY  Hahm DH  Lee HJ  Shim I 《Life sciences》2003,74(4):435-450
Acori graminei rhizoma (AGR) and Uncariae Ramulus et Uncus (URE) have been widely used as herbal medicine against ischemia. In order to investigate whether AGR and URE influenced cerebral ischemia-induced neuronal and cognitive impairments, we examined the effect of AGR and URE on ischemia-induced cell death in the striatum, cortex and hippocampus, and on the impaired learning and memory in the Morris water maze and radial eight-arm maze in rats. After middle cerebral artery occlusion (MCAO) for 2 h, rats were administered saline, AGR or URE (100 mg/kg, p.o.) daily for three weeks, followed by their training to the tasks. In the water maze test, the animals were trained to find a platform in a fixed position during 6 days and then received a 60-s probe trial in which the platform was removed from the pool on the 7th day. In the radial eight-arm maze, animals were tested six times per week for 1 week. Rats with ischemic insults showed impaired learning and memory on the tasks. Pretreatment with AGR and URE produced a significant improvement in escape latency to find the platform in the Morris water maze and in the number of choice errors in the radial arm maze test. Consistent with behavioral data, pretreatments with AGR and URE significantly reduced ischemia-induced cell death in the hippocampal CA1 area. These results demonstrated that AGR and URE have a protective effect against ischemia-induced neuronal loss and learning and memory damage. Our studies suggest that AGR and URE may be useful in the treatment of vascular dementia.  相似文献   

10.
11.
Cerebral ischemia is a major cause of adult disability and death worldwide. Evidence suggests that Bax-dependent initiation and activation of intrinsic apoptotic pathways contribute to ischemic brain injury. We investigated the Bax-inhibiting peptide VPALR, designed from the rat Ku70-Bax inhibiting domain, on the apoptotic neuronal cell death and behavioral deficits following global cerebral ischemia. The pentapeptide was infused into the left lateral ventricle of the rat brain by intracerebroventricular (i.c.v.) injection 1 h after cerebral ischemia, and results showed that it highly permeated hippocampal neurons and bound to Bax protein in vivo. Post-treatment with VPALR reduced the delayed neuronal damage by approximately 78% compared to the non-treated ischemic control and scrambled peptide-treated rats. TUNEL analysis revealed that VPALR markedly reduced the ischemia-induced increase in apoptotic neuronal death in rat hippocampal CA1 region. VPALR post-treatment also significantly attenuated Bax activation and its mitochondrial translocation as compared with scrambled peptide-treated animals. Concomitantly, Bax-inhibiting peptide-treated rats showed reduced cytochrome c release from mitochondria to cytosol and reduced caspase-3 activation in response to cerebral ischemia, indicating that activation of the intrinsic apoptotic pathway was reduced. Furthermore, Bax-inhibiting peptide improved spatial learning and memory performance in the Morris water maze, which was seriously affected by global cerebral ischemia. In conclusion, Bax inhibition by cell-permeable pentapeptides reduced apoptotic neuronal injury in the hippocampal CA1 region and behavioral deficits following global ischemia. These results suggest that Bax is a potential target for pharmacological neuroprotection and that Bax-inhibiting peptide may be a promising neuroprotective strategy for cerebral ischemia.  相似文献   

12.
The steroid hormone estradiol has been shown to modulate cognitive function in both animals and humans, and although the exact mechanisms associated with these effects are unknown, interactions with the cholinergic system have been proposed. We examined the neurocognitive effects of short-term estradiol treatment and its interaction with the cholinergic system using the muscarinic receptor antagonist scopolamine in healthy young women. Thirty-four participants (Mean age ± SD = 22.4 ± 4.4) completed baseline cognitive assessment and then received either 100 μg/day transdermal estradiol or transdermal placebo for 31 days. On days 28 and 31 of treatment, further cognitive assessment was performed pre- and 90 min post-scopolamine (0.4 mg) or placebo (saline) injection, under a randomized double-blind placebo-controlled design. Short-term estradiol treatment significantly enhanced spatial working memory with a trend for improvement in long-term verbal learning and memory. Overall, estradiol treatment did not protect against or attenuate the scopolamine-induced impairments in the cognitive domains assessed. Findings suggest that estrogen has minimal effects on cholinergic-mediated cognitive processes following short-term treatment. Effects of estradiol treatment may be dependent on age, dose of estradiol, integrity of cholinergic innervation and baseline endogenous estrogen levels, which may in part explain the inconsistent findings in the literature.  相似文献   

13.
The hippocampus is implicated in spatial cognition, which is sexually dimorphic and developmentally sensitive to gonadal steroids. Previously we have shown a sex difference in CA3 pyramidal cell layer volume and neuronal soma size that was reversible with neonatal castration in males or prenatal treatment of females with either testosterone propionate (TP) or a nonaromatizable androgen, dihydrotestosterone propionate, but not estradiol benzoate, all of which correlated with adult water maze navigation. The present study further investigates developmental androgen sensitivity of CA3 pyramidal neurons by measuring dendritic morphology and its relation to adult spatial ability. Female rats were injected with TP on postnatal day (P) 3 and P5 or ovariectomized (OVX) on P2, and male rats were castrated on P2, with or without testosterone replacement (Cas+T). Sham surgery controls were also included. Animals were tested on a water maze in adulthood, sacrificed, and CA3 pyramidal neurons were Golgi-stained and reconstructed in three dimensions using a computer-interfaced morphometry system. High-androgen groups (control males, Cas+T, TP females) performed better in spatial navigation and exhibited CA3 neurons with longer dendrites, a larger number of dendritic branches, and volumes of influence compared to low-androgen groups (control females, castrated males, OVX). Collectively, these findings indicate that the critical time period for organizational effects of androgens on the CA3 pyramidal neurons includes both prenatal and postnatal life, during which time androgens regulate developmental events such as somal growth and neuronal differentiation, all of which significantly contribute to establishing the sex difference in adult spatial navigation.  相似文献   

14.
Recent studies suggest that the ability of estradiol to enhance cognitive performance diminishes with age and/or time following loss of ovarian function. We hypothesize that this is due, in part, to a decrease in basal forebrain cholinergic function. This study tested whether donepezil, a cholinesterase inhibitor, could restore estradiol effects on cognitive performance in aged rats that had been ovariectomized as young adults. Rats were ovariectomized at 3 months of age, and then trained on a delayed matching to position (DMP) T-maze task, followed by a configural association (CA) operant condition task, beginning at 12-17 or 22-27 months of age. Three weeks prior to testing, rats started to receive either donepezil or vehicle. After one week, half of each group also began receiving estradiol. Acclimation and testing began seven days later and treatment continued throughout testing. Estradiol alone significantly enhanced DMP acquisition in middle-aged rats, but not in aged rats. Donepezil alone had no effect on DMP acquisition in either age group; however, donepezil treatment restored the ability of estradiol to enhance DMP acquisition in aged rats. This effect was due largely to a reduction in the predisposition to adopt a persistent turn strategy during acquisition. These same treatments did not affect acquisition of the CA task in middle-aged rats, but did have small but significant effects on response time in aged rats. The data are consistent with the idea that estrogen effects on cognitive performance are task specific, and that deficits in basal forebrain cholinergic function are responsible for the loss of estradiol effect on DMP acquisition in aged ovariectomized rats. In addition, the data suggest that enhancing cholinergic function pharmacologically can restore the ability of estradiol to enhance acquisition of the DMP task in very old rats following long periods of hormone deprivation. Whether donepezil has similar restorative effects on other estrogen-sensitive tasks needs to be explored.  相似文献   

15.
Abnormal function of the neuroendocrine stress system has been implicated in the behavioral impairments observed following brain ischemia. The current study examined long-term changes in stress signal regulation 30 days following global cerebral ischemia. Experiment 1 investigated changes in the expression of corticotropin releasing hormone (CRH) and its subtype 1 receptor (CRHR1), glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN), the central nucleus of the amygdala (CeA), and the CA1 subfield of the hippocampus. Tyrosine hydroxylase (TH) was determined at the locus coeruleus (LC). Experiment 2 investigated the role of central CRHR1 activation on corticosterone (CORT) secretion at multiple time intervals following global ischemia after exposure to an acute stressor. Findings from Experiment 1 demonstrated a persistent increase in GR, CRH and CRHR1 immunoreactivity (ir) at the PVN, reduced GR and CRHR1 expression in pyramidal CA1 neurons, and increased LC TH expression in ischemic rats displaying working memory errors in the radial arm Maze. Findings from Experiment 2 revealed increased CORT secretion up to 7 days, but no longer present 14 and 21 days post ischemia. However upon an acute restraint stress induced 27 days following reperfusion, ischemic rats had increased plasma CORT secretions compared to sham-operated animals, suggesting HPA axis hypersensitivity. Antalarmin (2 μg/2 μl) pretreatment significantly attenuated post ischemic elevation of basal and stress-induced CORT secretion. These findings support persistent neuroendocrine dysfunctions following brain ischemia likely to contribute to emotional and cognitive impairments observed in survivors of cardiac arrest and stroke.  相似文献   

16.

Aims

Melatonin possesses various pharmacological effects including neuroprotective effects against brain ischemia. Post-ischemic increases in matrix metalloproteinase-9 (MMP-9) expression and activity mainly contribute to neuronal damage by degradation of the extracellular matrix. This study was designed to examine whether melatonin has a neuroprotective effect and an influence on MMP-9 in transient global brain ischemia.

Main methods

Mice were subjected to 20 min of global brain ischemia and sacrificed 72 h later. Melatonin (30 mg/kg) was administered 30 min before and 2 h after ischemia as well as once daily until sacrifice.

Key findings

Hippocampal pyramidal cell damage after ischemia was significantly decreased by melatonin. As observed by zymography, melatonin inhibited the increase of MMP-9 activity after ischemia. In the brain sections, the increased gelatinase activity was mainly observed in the hippocampus after ischemia and melatonin also reduced gelatinase activity. The laminin and NeuN expression levels were reduced in the hippocampal CA1 and CA2 regions after ischemia, and melatonin reduced laminin degradation and neuronal loss. A TUNEL assay demonstrated that there were TUNEL-positive cells in the hippocampus and the number of TUNEL-positive cells was significantly decreased by melatonin. There was no difference in the ischemia-induced hippocampal neuronal damage between the vehicle- and melatonin-treated groups of MMP-9 knock-out mice.

Significance

These data demonstrate that melatonin suppressed the occurrence of neuronal injury, which might be partly due to its inhibitory effects on MMP-9 in addition to its anti-oxidative effects. MMP-9 may be an important key target of melatonin in neuroprotection against global ischemia.  相似文献   

17.
Two pulses of 17β-estradiol (10 µg) are commonly used to increase hippocampal CA1 apical dendritic spine density and alter spatial performance in ovariectomized (OVX) female rats, but rarely are the measures combined. The goal of this study was to use this two-pulse injection protocol repeatedly with intervening wash-out periods in the same rats to: 1) measure spatial ability using different tasks that require hippocampal function and 2) determine whether ovarian hormone depletion for an extended 10-week period reduces 17β-estradiol's effectiveness in elevating CA1 apical dendritic spine density. Results showed that two injections of 10 µg 17β-estradiol (72 and 48 h prior to testing and timed to maximize CA1 apical spine density at behavioral assessment) corresponded to improved spatial memory performance on object placement. In contrast, two injections of 5 µg 17β-estradiol facilitated spatial learning on the water maze compared to rats given two injections of 10 µg 17β-estradiol or the sesame oil vehicle. Neither 17β-estradiol dose altered Y-maze performance. As expected, the intermittent two-pulse injection protocol increased CA1 apical spine density, but 10 weeks of OVX without estradiol treatment decreased the effectiveness of 10 µg 17β-estradiol to increase CA1 apical spine density. Moreover, two pulses of 5 µg 17β-estradiol injected intermittently failed to alter CA1 apical spine density and decreased basal spine density. These results demonstrate that extended time without ovarian hormones reduces 17β-estradiol's effectiveness to increase CA1 apical spine density. Collectively, these findings highlight the complex interactions among estradiol, CA1 spine density/morphology, and task requirements, all of which contribute to behavioral outcomes.  相似文献   

18.
《Hormones and behavior》2009,55(5):684-693
The steroid hormone estradiol has been shown to modulate cognitive function in both animals and humans, and although the exact mechanisms associated with these effects are unknown, interactions with the cholinergic system have been proposed. We examined the neurocognitive effects of short-term estradiol treatment and its interaction with the cholinergic system using the muscarinic receptor antagonist scopolamine in healthy young women. Thirty-four participants (Mean age ± SD = 22.4 ± 4.4) completed baseline cognitive assessment and then received either 100 μg/day transdermal estradiol or transdermal placebo for 31 days. On days 28 and 31 of treatment, further cognitive assessment was performed pre- and 90 min post-scopolamine (0.4 mg) or placebo (saline) injection, under a randomized double-blind placebo-controlled design. Short-term estradiol treatment significantly enhanced spatial working memory with a trend for improvement in long-term verbal learning and memory. Overall, estradiol treatment did not protect against or attenuate the scopolamine-induced impairments in the cognitive domains assessed. Findings suggest that estrogen has minimal effects on cholinergic-mediated cognitive processes following short-term treatment. Effects of estradiol treatment may be dependent on age, dose of estradiol, integrity of cholinergic innervation and baseline endogenous estrogen levels, which may in part explain the inconsistent findings in the literature.  相似文献   

19.
Ischemia is characterized by oxidative stress and changes in the antioxidant defense system. Our recent in vitro study showed that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects cortical astrocytes against oxidative stress. In the current study, we examined the effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on ischemia-induced neuronal damage in a gerbil ischemia/reperfusion models. Extensive neuronal death in the hippocampal CA1 area was observed 4 days after ischemia/reperfusion. Intraperitoneal injection of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride (0.3 mg/kg body weight) significantly prevented neuronal death in the CA1 region of the hippocampus in response to transient forebrain ischemia. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride administration reduced ischemia-induced increases in reactive oxygen species levels and malondialdehyde content. It also attenuated the associated reductions in glutathione level and superoxide dismutase, catalase, and glutathione peroxidase activities. Taken together, our results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against ischemia-induced neuronal damage by reducing oxidative stress through its antioxidant actions. [BMB Reports 2013; 46(7):370-375]  相似文献   

20.
In this study, the authors examined the difference of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in the hippocampal CA1 region (CA1) between adult and aged gerbils after 5 min of transient cerebral ischemia. Delayed neuronal death in the CA1 of the aged group was much slower than that in the adult group after ischemia/reperfusion (I/R). pERK1/2 immunoreaction was observed in the CA1 region of the sham-operated adult gerbil. pERK1/2 immunoreactivity and protein levels in the ischemic CA1 region of the adult group were markedly increased 4 days after I/R, and then reduced up to 10 days after I/R. In contrast, pERK1/2 immunoreaction was hardly detected in the CA1 region of sham-operated aged gerbils, and the immunoreactivity increased from 1 day after the ischemic insult, and still observed until 10 days post-ischemia. In addition, pERK1/2-immunoreaction was expressed in astrocytes in the ischemic CA1 region: The expression in the ischemia-operated aged gerbils was later than that in the ischemia-operated adult gerbils. These results indicate that different patterns of ERK1/2 immunoreactivity may be associated with different processes of delayed neuronal death in adult and aged animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号