首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated the long-lasting effects of prenatal repeated restraint stress on social behavior and anxiety, as well as its repercussions on oxytocin (OT) and vasopressin (VP)-positive neurons of the paraventricular (PVN) and supraoptic (SON) nuclei from stressed pups in adulthood. Female Wistar rats were exposed to restraint stress in the last 7 days of pregnancy. At birth, pups were cross-fostered and assigned to the following groups: prenatally non-stressed offspring raised by prenatally non-stressed mothers (NS:NS), prenatally non-stressed offspring raised by prenatally stressed mothers (S:NS), prenatally stressed offspring raised by prenatally non-stressed mothers (NS:S), prenatally stressed offspring raised by prenatally stressed mothers (S:S). As adults, male prenatally stressed offspring raised both by stressed mothers (S:S group) and non-stressed ones (NS:S group) showed impaired social memory and interaction. In addition, when both adverse conditions coexisted (S:S group), increased anxiety-like behavior and aggressiveness was observed in association with a decrease in the number of OT-positive magnocellular neurons, VP-positive magnocellular and parvocellular neurons of the PVN. The NS:S group exhibited a reduction in the amount of VP-positive magnocellular neurons compared to the S:NS. Thus, the social behavior deficits observed in the S:S and NS:S groups may be only partially associated with these alterations to the peptidergic systems. No changes were shown in the OT and VP cellular composition of the SON nucleus. Nevertheless, it is clear that a special attention should be given to the gestational period, since stressful events during this time may be related to the emergence of behavioral impairments in adulthood.  相似文献   

2.
本研究通过对雌雄子午沙鼠进行新物体识别和社会认知实验,运用免疫组化方法检测其相关脑区合成催产素(OT)、加压素(AVP)和多巴胺(DA)能的神经元数量,采用酶联免疫试验(ELISA)方法检测了其血清中OT、AVP的水平,探究了雌雄子午沙鼠的两性认知差异及其神经内分泌水平的差异。结果表明,雌雄子午沙鼠对新物体的探究时间均要显著高于旧物体,雌雄子午沙鼠的辨别指数无显著差异(P>0.05);雄性子午沙鼠随着探究次数的增加对重复刺激鼠a的探究时间不断减少,对陌生刺激鼠b的探究时间显著高于刺激鼠a(P<0.05);雌性子午沙鼠没有此趋势。雄性子午沙鼠OT能神经元数量在下丘脑室旁核(PVN)和视上核(SON)均要显著少于雌性(P<0.05);雄性个体DA能神经元数量在黑质显著高于雌性(P<0.01);然而雄性个体DA能神经元数量在腹侧被盖区显著少于雌性(P<0.01);雌雄子午沙鼠血清OT、AVP水平均无显著差异。综上所述,雌雄子午沙鼠对新物体的识别能力无显著差异,然而雄性子午沙鼠的社会认知能力强于雌性。在神经内分泌水平上,雌雄子午沙鼠PVN和SON中OT能神经元数量、黑质和腹侧背盖区的DA能神经元数量均呈现出了两性差异。  相似文献   

3.
The ontogeny of the rat supraoptic (SON) and paraventricular (PVN) nuclei was studied using a combined fluorescence-immunocytochemical technique for the simultaneous localization of catecholamines (CA) and neurophysin (NP). NP neurons and CA varicosities were first detected in the SON and PVN at 17 days postcoitus. The development of NP neurons which included increases in immunoreactivity in both nuclei proceeded through fetal and neonatal stages, approaching maturity by 21–28 days postnatal; the maturation of the PVN lagged behind that of the SON. CA varicosities appeared to make contact with NP neurons beginning at 21–22 days postcoitus. An apparent increase in varicosity-perikaryal contacts with age was observed in both nuclei; by 14–21 days postnatal adult-like patterns were established. The prenatal dominance of NP stain relative to CA fluorescence may suggest a possible neurotrophic role for magnocellular neurons and/or their products upon ingrowing noradrenergic axons.  相似文献   

4.
Our aim was to investigate whether neonatal LPS challenge may improve hormonal, cardiovascular response and mortality, this being a beneficial adaptation when adult rats are submitted to polymicrobial sepsis by cecal ligation and puncture (CLP). Fourteen days after birth, pups received an intraperitoneal injection of lipopolysaccharide (LPS; 100μg/kg) or saline. After 8-12 weeks, they were submitted to CLP, decapitated 4, 6 or 24h after surgery and blood was collected for vasopressin (AVP), corticosterone and nitrate measurement, while AVP contents were measured in neurohypophysis, supra-optic (SON) and paraventricular (PVN) nuclei. Moreover, rats had their mean arterial pressure (MAP) and heart rate (HR) evaluated, and mortality and bacteremia were determined at 24h. Septic animals with neonatal LPS exposure had higher plasma AVP and corticosterone levels, and higher c-Fos expression in SON and PVN at 24h after surgery when compared to saline treated rats. The LPS pretreated group showed increased AVP content in SON and PVN at 6h, while we did not observe any change in neurohypophyseal AVP content. The nitrate levels were significantly reduced in plasma at 6 and 24h after surgery, and in both hypothalamic nuclei only at 6h. Septic animals with neonatal LPS exposure showed increase in MAP during the initial phase of sepsis, but HR was not different from the neonatal saline group. Furthermore, neonatally LPS exposed rats showed a significant decrease in mortality rate as well as in bacteremia. These data suggest that neonatal LPS challenge is able to promote beneficial effects on neuroendocrine and cardiovascular responses to polymicrobial sepsis in adulthood.  相似文献   

5.
6.
Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220-280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.  相似文献   

7.
We assessed the effects of cold and isolation stress on arginine vasopressin (AVP) mRNA in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Vasopressin mRNA levels were determined by in situ hybridization histochemistry at the cellular level. In posterior magnocellular neurons of the PVN isolation stress for 7 or 14 days increased vasopressin mRNA levels 28 and 29%, respectively, compared to group-housed controls. No significant alterations in vasopressin gene expression were observed in the SON after 7 or 14 days of isolation stress. Scattered magnocellular AVP mRNA-expressing cells of the medial parvocellular PVN showed increases of 19 and 34% after 7 and 14 days of isolation, respectively. We also studied the effect of cold or combined cold and isolation stress on vasopressin gene expression in the PVN and SON. Cold stress for 3 h daily for 4 consecutive days increased AVP mRNA levels in the posterior magnocellular PVN by 15%. Cold-isolated animals showed an increase of 21%. No significant effect on AVP mRNA levels in the SON was observed. In contrast to the posterior magnocellular PVN, cold or cold-isolation stress increased AVP mRNA in magnocellular neurons of the medial parvocellular region of the PVN by 25 and 43%, respectively, relative to control rats. These results suggest that psychological and metabolic stress may be added to the list of stressors that activate the hypothalamo-neurohypophysial system.  相似文献   

8.
Neonatal maternal separation alters learning and memory. Glucocorticoids also modulate adult learning and memory, and neonatal maternal separation alters forebrain glucocorticoid receptor (GR) concentrations. We used eyeblink classical conditioning to assess the effect of neonatal maternal separation on associative learning. We assessed delay eyeblink conditioning, GR expression, and total neuron number in the interpositus nucleus, a critical site of plasticity in eyeblink conditioning, in adult rats that had undergone either standard animal facilities rearing, handling for 15 min, or maternal separation for either 15 or 60 min per day on postnatal days 2-14. At 2-3 months of age, delay eyeblink classical conditioning was assessed. Brains were processed for GR immunohistochemistry, and GR expression in the interpositus nucleus was assessed using a computer-based densitometry system. Neuron counts and nuclear volumes were obtained from an alternate series of thionin-stained sections. Maternal separation significantly impaired eyeblink conditioning in male but not female rats. Handling and maternal separation did not significantly affect interpositus neuron number and volume. However, prolonged maternal separation significantly increased GR expression in the posterior interpositus in males, and increases were correlated with eyeblink conditioning. In female rats, maternal separation and handling did not significantly alter interpositus neuron number, volume, or GR protein expression, and GR expression did not correlate with eyeblink conditioning. Thus, neonatal maternal separation produces adult deficits in eyeblink conditioning and alterations in GR expression in its neural substrate in a sex-dependent manner.  相似文献   

9.
A wide body of research has indicated that perinatal exposure to stressors alters the organism, notably by programming behavioral and neuroendocrine responses and sensitivity to drugs of abuse in adulthood. Recent evidence suggests that adolescence also may represent a sensitive period of brain development, and yet there has been little research on the long-lasting effects of stressors during this period. We investigated the effects of pubertal social stress (PS; daily 1-h isolation followed by pairing with a new cage mate on postnatal days 33-48) on locomotor sensitization to injections of nicotine and corticosterone response to restraint stress when the rats were adults (approximately 3 weeks after PS). There were no differences among the groups in locomotor activity to injections of saline. However, PS females had enhanced locomotor sensitization to repeated doses of nicotine compared to control (non-stressed; NS) females, whereas PS males and NS males did not differ. PS enhanced the corticosterone response to restraint in male rats previously sensitized to nicotine and decreased the corticosterone response in nonsensitized male rats. In contrast, PS females and NS females did not differ in plasma corticosterone levels in response to restraint stress, but NS females showed enhanced corticosterone release to restraint after sensitization to nicotine. Thus, during adolescence, social stressors can have long-lasting effects, and the effects appear to differ for males and females.  相似文献   

10.
Summary Sexual stimulation of males has been reported to affect hypothalamic oxytocinergic systems. In the present study we used radioimmunoassays of micro-dissected forebrain regions and immunocytochemical analysis of Vibratome sections to study the oxytocin systems of naive males, males killed after one mating, and males mated daily with different receptive females for 3 weeks. In males that had mated once, less oxytocin-immunoreactive neurons were observed in the paraventricular (PVN), supraoptic (SON) and periventricular (NPE) nuclei than in naive males. However, after repeated matings, the number of immunoreactive neurons and their staining intensity was increased in these regions. Furthermore, additional oxytocinergic neurons could be found in the lateral subcommissural nucleus, the zona incerta and the ansa lenticularis of repeatedly mated males. Oxytocin-immunoreactive neurons were only occasionally seen in these areas in unmated males or in animals that had been killed after initial mating. Radio-immunoassays of microdissected PVN, SON, NPE and the lateral hypothalamus confirmed the reduction in oxytocin-immunoreactive levels after a first mating by a male and the increase after repeated matings. It is likely that oxytocin secretion into peripheral and portal circulation is stimulated by the endocrine conditions associated with initial mating. These immediate effects may be followed by the activation of synthesis in oxytocin neurons in several sites of the basal forebrain.  相似文献   

11.
Summary In situ hybridization histochemistry and indirect immunofluorescence histochemistry were used to study changes in the expression of vasopressin (VP), oxytocin (OXY), tyrosine hydroxylase (TH), galanin (GAL), dynorphin (DYN) and cholecystokinin (CCK) in hypothalamic magnocellular neurons of the paraventricular (PVN) and supraoptic (SON) nuclei of rats. After prolonged administration of 2% sodium chloride as drinking water (salt-loading), the treatment increased the levels of VP, OXY, TH, GAL, DYN and CCK mRNA in the PVN and SON. The increase in CCK mRNA was, however, proportionally higher in the PVN than in the SON. Within cell bodies of the PVN and SON of salt-loaded rats, a depletion of VP- and OXY-like immunoreactivity (LI) and an increase in TH-LI were seen. In salt-loaded/colchicine-treated rats, a marked decrease in GAL- and DYN-LI, but no specific changes in CCK-LI were observed. Within nerve fibers of the posterior pituitary of salt-loaded rats, a marked depletion of VP-, GAL- and DYN-LI was found. Less pronounced depletion was observed in OXY- and CCK-LI, and no specific changes in TH-LI were seen. The results show that high plasma osmolality induces increased mRNA levels for VP, OXY, TH, GAL, DYN and CCK, presumably indicating increased synthesis, an increased export from cell somata of VP, OXY, GAL and DYN, and a decrease in levels of these peptides in the posterior pituitary, suggesting increased release. The catecholamine-synthesizing enzyme TH, however, which has a cytoplasmic localization and is not released from nerve endings, remains high in the cell bodies and nerve endings during this state of increased activity.  相似文献   

12.
1. The diagonal band (DB) and the lateral septal area (LSA) are two prosencephalic structures, which were implicated in vasopressin release.2. The present experiment was designed to investigate neural connections between the DB and the LSA and from these nuclei to the paraventricular (PVN) and supraoptic (SON) nuclei, which could be related to vasopressin release.3. For the above purpose the bidirectional neuronal tracer biotinylated dextran amine (BDA) was injected into the DB or the LSA of male Wistar rats. Five days later the animals were sacrificed and brain slices were processed and analyzed to determine neuronal projections efferent from as well as afferent to these structures.4. Neuronal staining was more prominent in regions ipsilateral to the BDA injection site.5. After BDA injections into the DB, efferent projections from the DB were observed at the LSA, the PVN, the prefrontal cortex, the mediodorsal thalamic nucleus, and throughout the anterior hypothalamus, but not at the SON. At the PVN, labeled varicose fibers were observed at the magnocellular portion. The DB was found to receive a massive input from the LSA. More discrete projections to the DB were originated at the prefrontal cortex and from hypothalamic neurons outside the PVN and the SON.6. After BDA injections into the ventral portion of the LSA, efferent projections from the LSA were intense at the DB and throughout the hypothalamus. Labeled fibers were observed at the structures surrounding the SON or the PVN but not within those nuclei.7. The results indicate a massive neural output from the LSA to the DB and the existence of a direct neural connection from the DB to the PVN. No direct connections were observed between the LSA and the magnocellular nuclei (PVN and SON) or between the DB and the SON.  相似文献   

13.
Abstract

We studied the interactions between apoptosis regulator proteins (Bcl-2, p53 and caspase-9) and neuronal nitric oxide in vasopressinergic magnocellular centers of the hypothalamus using neuronal nitric oxide synthase (nNOS) gene knockout mice. nNOS gene deletion resulted in accumulation of Bcl-2, p53 and caspase-9 in the paraventricular (PVN) and supraoptic (SON) nuclei in controls. Dehydration increased the levels of all three apoptosis regulator proteins studied in nuclei of wild type mice. In the hypothalamus magnocellular centers of nNOS knockout mice, however, expression of Bcl-2, p53 and caspase-9 was unchanged after dehydration. The number of magnocellular neurons did not change in the SON and PVN of nNOS deficient mice compared to wild type, and after dehydration, cell death was not observed in either nucleus of wild type or knockout mice despite activation of apoptosis regulator protein expression. Thus, we demonstrated that gene disruption of nNOS prevents activation of Bcl-2, p53 and caspase-9 expression during water deprivation, and that nNOS deficiency did not affect survival of magnocellular neurons of the hypothalamus.  相似文献   

14.
The role of the noradrenergic nucleus Locus Coeruleus (LC) on hemorrhage-induced vasopressin (AVP) and oxytocin (OT) secretion was examined. Rats with LC lesion were submitted to three 1-min hemorrhage sessions at 5-min intervals; 15% of the total blood volume was withdrawn in each session. OT and AVP were measured in plasma, paraventricular (PVN) and supraoptic (SON) nuclei and in posterior pituitary (PP). LC Lesion did not affect basal plasma AVP or OT levels, but partly blocked the increase in plasma AVP and OT induced by hemorrhage. Hemorrhage produced decreases in content of AVP and OT in the PVN and SON and increased levels in the PP. These responses were attenuated in the lesioned group, but only in the PVN and PP. Data suggest a stimulatory role of the inputs from LC to PVN neurons on hemorrhage-induced OT and AVP secretion and that, this pathway is critical in the hypo-volemic neuroendocrine reflex.Special Issue Dedicated to Miklós Palkovits.  相似文献   

15.
Mineralocorticoids play a predominant role in development of salt appetite and hypertension. Since vasoactive peptides could mediate the central effects of mineralocorticoids, we evaluated changes of immunoreactive (IR) arginine vasopressin (AVP) in the paraventricular (PVN) and supraoptic (SON) hypothalamic nucleus during DOCA-induced salt appetite. In one model, rats having free access to water and 3% NaCl during 9 (prehypertensive stage) or 21 days (hypertensive stage) received DOCA (s.c., 10 mg/rat/in alternate days). A decrease in the IR cell area, number of IR cells and staining intensity was obtained in magnocellular PVN of rats treated during 9 days. After 21 days IR cell area and number of cells in the PVN also decreased, but staining intensity of remaining cells was normal. The same parameters were unchanged in the SON. In another model, animals treated with DOCA during 9 days had only access to 3% NaCl or water. The IR cell area in PVN and SON significantly increased in mineralocorticoid-treated and control animals, both drinking 3% NaCl. Staining intensity (PVN and SON) and number of IR cells (PVN) also augmented in DOCA-treated animals drinking salt respect of a group drinking water. Plasma AVP in rats treated with DOCA and offered salt and water, exhibited a 2-2.5 fold increase at the time of salt appetite induction. Plasma AVP was substantially higher in rats drinking salt only, while the highest levels were present in salt-drinking DOCA-treated rats. Thus, peptide depletion in the PVN may be due to increased release, because reduced levels of hypothalamic and posterior pituitary AVP were measured in this model. In rats drinking salt only the substantial increase of IR AVP in the PVN and SON, may be due to dehydration and hyperosmosis. Because DOCA-salt treated rats showed higher AVP levels in the PVN compared to untreated rats drinking salt only, it is possible that DOCA sensitized PVN cells to increase AVP production. The results suggest the vasopressinergic system could mediate some central functions of mineralocorticoids.  相似文献   

16.
Stressful social conditions, such as isolation, that occur during sensitive developmental periods may alter present and future social behavior. Changes in the neuroendocrine mechanisms closely associated with affiliative behaviors and stress reactivity are likely to underlie these changes in behavior. In the present study, we assessed the effects of post-weaning social housing conditions on the neuropeptides arginine vasopressin (AVP) and oxytocin (OT), and components of the hypothalamic-pituitary-adrenal axis (corticotropin releasing factor: [CRF], and corticosterone: [CORT]) in the prairie vole (Microtus ochrogaster), a socially monogamous bi-parental rodent. Following weaning at 21 days of age, prairie voles were maintained in one of three housing conditions: social isolation (isolate), paired with a same sex sibling (sibling) or paired with a stranger (stranger) of the same sex and age. Housing conditions were maintained for either 4 or 21 days. Central CRF, AVP and OT immunoreactivity (ir) were quantified and circulating plasma CORT, AVP and OT were assayed. Isolated voles had higher CRF-ir in the paraventricular nucleus of the hypothalamus (PVN) compared with sibling and stranger housed voles. Plasma CORT was significantly higher in isolates. AVP-ir was significantly lower in the PVN of isolate females compared to either sibling females or stranger females. However, AVP-ir was significantly higher in the supraoptic nucleus (SON) of isolates compared to siblings. There were no differences in central OT-ir or plasma OT. These results identify neuroendocrine mechanisms which respond to isolation and potentially modulate behavior.  相似文献   

17.
18.
Various hormones, including sex steroids and neuropeptides, have been implicated in aggression. In this study we examined (1) sex differences in intrasexual aggression in na?ve prairie voles; (2) the effects of developmental manipulations of oxytocin on intrasexual aggression; and (3) changes in patterns of intrasexual aggression after brief exposure to an animal of the opposite sex. Within 24 h of birth, infants were randomly assigned to receive either an injection of oxytocin (OT) or oxytocin antagonist (OTA) or to one of two control (CTL) groups receiving either isotonic saline or handling without injection. As adults, animals were tested twice in a neutral arena; before (Test 1) and 24 h after (Test 2) a 4-h exposure to an animal of the opposite sex. In Test 1, CTL males were more likely to show aggressive and less likely to show social behavior than CTL females. No significant treatment differences were observed within either sex in Test 1. In Test 2, after brief exposure to a male, females treated with OT became more aggressive and less social than OTA or CTL females. Male aggressive behavior did not change after exposure to a female. An increase in aggression and decline in social behavior toward other females, seen here in OT-treated females, is typically observed only following several days of female-male cohabitation. These findings demonstrate a sex difference in intrasexual aggression and suggest that neonatal exposure to OT may facilitate the onset of the mate-guarding component of pair bonding in female prairie voles.  相似文献   

19.
Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.  相似文献   

20.
Concentrations of vasopressin (VP) precursor and oxytocin (OT) precursor mRNA were measured in magnocellular cell groups of the rat hypothalamus by newly developed solution hybridization assays. The assays employed single-stranded 35S-labeled VP-specific and OT-specific DNA probes that were prepared by primer extension on recombinant M13 DNA templates. Solution hybridization assays were standardized by known amounts of cloned DNA. The detection limit was less than 1 pg DNA equivalent of the respective mRNA. In total RNA preparations of microdissected supraoptic nucleus (SON) mean (+/- SEM) basal levels of 1.37 +/- 0.18 pg VP mRNA and 1.95 +/- 0.14 pg OT mRNA were measured. RNA of the microdissected paraventricular nucleus (PVN) contained 0.35 +/- 0.02 pg VP mRNA and 1.77 +/- 0.15 pg OT mRNA. Elevation of plasma osmolality induced by drinking of 2% saline for 25 days resulted in a 1.85-fold increase in VP mRNA levels of the SON and a 1.6-fold increase in VP mRNA levels of the PVN. The solution hybridization assays are suitable tools to study the regulation of VP and OT mRNAs in magnocellular neurons of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号