首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Hormones and behavior》2008,53(5):600-611
Corticotropin releasing factor (CRF) and serotonin (5-HT) are strongly linked to stress and anxiety in vertebrates. As a neuromodulator in the brain, CRF has anxiogenic properties often characterized by increased locomotion and stereotyped behavior in familiar environments. We hypothesized that expression of anxiogenic behavior in response to CRF will also be exhibited in a teleost fish. Rainbow trout were treated with intracerebroventricular (icv) injections of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Treatment with either dose of CRF elicited greater locomotion and pronounced head shaking behavior but did not influence water column position. Locomotor and head shaking behaviors may be analogous to the increased stereotypy evoked by icv CRF in rats and may reflect the expression of stress/anxiety behavior. Injection with either aCSF or CRF produced significant increases in plasma cortisol. The absence of behavioral changes in aCSF-injected fish suggests that the behavioral responses following CRF were not due to cortisol. Treatment with 2000 ng CRF significantly increased serotonin, 5-HIAA and dopamine concentrations in the subpallium and raphé and increased 5-HIAA in the preoptic hypothalamus (POA). Concurrent effects of CRF on central monoamines, locomotion and head shaking in trout suggest that anxiogenic properties of CRF are evolutionarily conserved. In addition, positive linear correlations between locomotion and serotonergic and dopaminergic function in the subpallium, POA and raphé nuclei suggest a locomotory function for these monoamines.  相似文献   

2.
The present study investigated whether the serotonergic system is involved in mediating the behavioral effects of corticotropin-releasing hormone (CRH) in juvenile spring chinook salmon, Oncorhynchus tshawytscha. An intracerebroventricular (ICV) injection of CRH induced hyperactivity. The effect of CRH was potentiated in a dose-dependent manner by the concurrent administration of the serotonin (5-HT) selective reuptake inhibitor fluoxetine. However, administration of fluoxetine alone had no effect on locomotor activity, suggesting that the locomotor-stimulating effect of CRH is mediated by the activation of the serotonergic system. Conversely, ICV injections of the 5-HT(1A) receptor antagonist NAN-190 attenuated the effect of CRH on locomotor activity when given in combination with CRH but had no effect when administered alone. These results provide the first evidence to support the hypothesis that the effect of CRH on locomotor activity in teleosts is mediated by activating the serotonergic system.  相似文献   

3.
Corticotropin releasing factor (CRF) and serotonin (5-HT) are strongly linked to stress and anxiety in vertebrates. As a neuromodulator in the brain, CRF has anxiogenic properties often characterized by increased locomotion and stereotyped behavior in familiar environments. We hypothesized that expression of anxiogenic behavior in response to CRF will also be exhibited in a teleost fish. Rainbow trout were treated with intracerebroventricular (icv) injections of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Treatment with either dose of CRF elicited greater locomotion and pronounced head shaking behavior but did not influence water column position. Locomotor and head shaking behaviors may be analogous to the increased stereotypy evoked by icv CRF in rats and may reflect the expression of stress/anxiety behavior. Injection with either aCSF or CRF produced significant increases in plasma cortisol. The absence of behavioral changes in aCSF-injected fish suggests that the behavioral responses following CRF were not due to cortisol. Treatment with 2000 ng CRF significantly increased serotonin, 5-HIAA and dopamine concentrations in the subpallium and raphé and increased 5-HIAA in the preoptic hypothalamus (POA). Concurrent effects of CRF on central monoamines, locomotion and head shaking in trout suggest that anxiogenic properties of CRF are evolutionarily conserved. In addition, positive linear correlations between locomotion and serotonergic and dopaminergic function in the subpallium, POA and raphé nuclei suggest a locomotory function for these monoamines.  相似文献   

4.
The dorsomedial hypothalamus (DMH) plays an important role in coordinating physiological and behavioral responses to stress-related stimuli. In vertebrates, DMH serotonin (5-HT) concentrations increase rapidly in response to acute stressors or corticosterone (CORT). Recent studies suggest that CORT inhibits postsynaptic clearance of 5-HT from the extracellular fluid in the DMH by blocking organic cation transporter 3 (OCT3), a polyspecific CORT-sensitive transport protein. Because OCTs are low-affinity, high-capacity transporters, we hypothesized that CORT effects on extracellular 5-HT are most pronounced in the presence of elevated 5-HT release. We predicted that local application of CORT into the DMH would potentiate the effects of d-fenfluramine, a 5-HT-releasing agent, on extracellular 5-HT. These experiments were conducted using in vivo microdialysis in freely-moving male Sprague-Dawley rats implanted with a microdialysis probe into the medial hypothalamus (MH), which includes the DMH. In Experiment 1, rats simultaneously received intraperitoneal (i.p.) injections of 1 mg/kg d-fenfluramine or saline and either 200 ng/mL CORT or dilute ethanol (EtOH) vehicle delivered to the MH by reverse-dialysis for 40 min. In Experiment 2, 5 μM d-fenfluramine and either 200 ng/mL CORT or EtOH vehicle were concurrently delivered to the MH for 40 min using reverse-dialysis. CORT potentiated the increases in extracellular 5-HT concentrations induced by either i.p. or intra-MH administration of d-fenfluramine. Furthermore, CORT and d-fenfluramine interacted to alter home cage behaviors. Our results support the hypothesis that CORT inhibition of OCT3-mediated 5-HT clearance from the extracellular fluid contributes to stress-induced increases in extracellular 5-HT and 5-HT signaling.  相似文献   

5.
The purpose of this study was to examine the gastrin-releasing peptide (GRP) mediated regulation of 5-HT neuronal activity in the paraventricular nucleus of the hypothalamus under basal and restraint stress conditions. Intracerebroventricular (icv) administration of GRP (1, 10, 100 ng/rat) increased 5-HIAA concentrations in the paraventricular nucleus (PVN) of the hypothalamus, but was without effect in the accumbens, suprachiasmatic and arcuate nuclei. Administration of (Leu(13)-psi-CH(2)NH-Leu(14)) Bombesin (10, 100 and 1000 ng/rat; icv), a GRP antagonist, had no effect by itself on PVN serotonergic activity; however, a dose of 1 microg/rat of this compound, completely blocked the increase of 5-HIAA concentrations induced by GRP (10 ng). Restraint stress increased serotonergic activity -as shown by an elevation of 5-HIAA in the PVN- as well as plasma ACTH and corticosterone. This stress-induced activation of both the serotonergic neurons and the hypothalamus-pituitary-adrenal axis was blocked by CRF and GRP antagonists. Interestingly, when the activation of hypothalamic 5-HT neurons was induced by GRP administration, alpha-helical (9-41) CRF was ineffective.These data suggest that GRP, by acting on GRP receptors but not via CRF receptors, increases 5-HT neuronal activity in the PVN. In turn, it appears that endogenous GRP and CRF receptor ligands are both simultaneously involved in the regulation of the increase in 5-HT neuronal activity, ACTH and corticosterone secretion, under stress conditions.  相似文献   

6.
The present study investigated: 1) the behavioral effects of chronic administration of a serotonin uptake inhibitor (fluoxetine) in juvenile Chinook salmon, Oncorhynchus tshawytscha and, 2) whether chronic administration of fluoxetine alters the behavioral effects of corticotropin-releasing hormone (CRH). Chronic (20 day) treatment with fluoxetine decreased locomotor activity when compared to fish given long-term injections of saline. An intracerebroventricular (i.c.v.) injection of CRH had no effect on locomotor activity following a 20 day intraperitoneal treatment with either saline or fluoxetine. Chronic treatment with fluoxetine also increased the amount of time fish spent near the center of the tank. A similar increase was seen in fish given a chronic intraperitoneal (i.p.) series of saline followed by an acute i.c.v. injection of CRH. However, the effect was not additive when fish were given chronic i.p. injections of fluoxetine followed by an acute i.c.v. injection of CRH. These results provide evidence to support the hypothesis that the serotonergic system is involved in mediating locomotor activity and habitat choice in teleosts.  相似文献   

7.
The role of the serotonergic mechanism in the regulation of β-endorphin (β-EP) and adrenocorticotropin (ACTH)-like immunoreactivity in plasma was investigated. Increases in β-EP and ACTH-LI produced by quipazine maleate (QPZ), a serotonergic agonist, 1 hr after injection could be completely prevented by the serotonin (5-HT) antagonist, cinanserin (CIN), which when injected alone, decreased basal plasma concentrations of both β-EP-LI and ACTH-LI. Concurrent injections of L-5-HTP with the 5-HT reuptake inhibitor, fluoxetine, produced an additive increase in plasma β-EP-LI 1 hr after injection. Injection of the 5-HT antagonist, cyproheptadine, significantly decreased plasma β-EP-LI. Stress by immobilization for 30 min or exposing the rats to 40° ± 1°C for 30 min produced an approximate 4-fold increase in plasma β-EP-LI and ACTH-LI, which was potentiated by I.P. injections of fluoxetine. Furthermore, the stress induced increases in plasma concentrations of β-EP-LI and ACTH-LI were significantly reduced by the serotonin antagonists metergoline and cinanserin. These results suggest that 5-HT is a potent stimulator of both β-EP and ACTH release and the increase in plasma concentrations of ACTH and β-EP induced by stress are probably mediated, at least in part, by central serotonergic mechanisms.  相似文献   

8.
The effects of intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF, 100 and 300 ng) were investigated in the social interaction test of anxiety in rats. Both doses of CRF significantly decreased active social interaction without a concomitant decrease in locomotor activity. CRF also significantly increased self-grooming, an effect that was independent of the decrease in social interaction. These results indicate an anxiogenic action for CRF. Chlordiazepoxide (CDP, 5 mg/kg ip) pretreatment reversed the anxiogenic effects of icv CRF (100 ng), but CRF did not prevent the sedative effects of CDP. There were no statistically significant changes due to CRF in locomotor activity or rears or head dipping in the holeboard test. Both doses of CRF significantly increased plasma concentrations of corticosterone. The possible mechanisms of the behavioral effects of CRF are discussed.  相似文献   

9.
In mammals, circadian rhythms of locomotor activity and many other behavioral and physiological functions are controlled by an endogenous pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Among various other afferents, the SCN receives a dense serotonergic input from the mesencephalic raphe complex. Experimental evidence obtained so far in Syrian hamsters suggests that serotonin (5-HT) mimics the effect of nonphotic stimuli during subjective day and modulates photic input to the SCN during subjective night. These findings are consistent with a putative role of serotonergic pathways in the transmission of the state of arousal to the SCN. In this paper, we review recent evidence for different modes of 5-HT action and/or the involvement of different 5-HT receptor subtypes in hamsters and rats. In intact rats, 5-HT agonists induce photic-like phase shifts of locomotor activity and melatonin rhythms as well as c-Fos expression in the ventral SCN. These results suggest a role for 5-HT in the transmission of photic rather than nonphotic information to the rat SCN. Such a function of 5-HT would also explain why the circadian system of rats is less sensitive or even insensitive to nonphotic stimuli.  相似文献   

10.
In mammals, circadian rhythms of locomotor activity and many other behavioral and physiological functions are controlled by an endogenous pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Among various other afferents, the SCN receives a dense serotonergic input from the mesencephalic raphe complex. Experimental evidence obtained so far in Syrian hamsters suggests that serotonin (5-HT) mimics the effect of nonphotic stimuli during subjective day and modulates photic input to the SCN during subjective night. These findings are consistent with a putative role of serotonergic pathways in the transmission of the state of arousal to the SCN. In this paper, we review recent evidence for different modes of 5-HT action and/or the involvement of different 5-HT receptor subtypes in hamsters and rats. In intact rats, 5-HT agonists induce photic-like phase shifts of locomotor activity and melatonin rhythms as well as c-Fos expression in the ventral SCN. These results suggest a role for 5-HT in the transmission of photic rather than nonphotic information to the rat SCN. Such a function of 5-HT would also explain why the circadian system of rats is less sensitive or even insensitive to nonphotic stimuli.  相似文献   

11.
The cricket, Gryllus bimaculatus, shows a rhythm reversal from diurnal to nocturnal in about a week after the imaginal molt. In the present study, we investigated the role of serotonin (5-HT) in the rhythm reversal. The 5-HT content in the brain measured by HPLC equipped with an electrochemical detector gradually increased after the imaginal molt, and in fully nocturnal adults it was about 2 times of nymphal level. We then examined the effects of 5,7-dihydroxytryptamine (5,7-DHT), a selective neurotoxine to serotonergic neurons, on the locomotor rhythm. In most animals with 5,7-DHT (25 muM or 250 muM, 32.2 nl) injected into the brain, daytime activity significantly increased even after the rhythm reversal, while nighttime activity was not significantly affected, forming rather diurnal pattern. The serotonin content in the brain of animals injected with 250 muM 5,7-DHT was reduced by about 30%. On the basis of these results, possible involvement of 5-HT in the neural mechanism controlling the locomotor rhythm is discussed.  相似文献   

12.
Higher-order executive tasks such as learning, working memory, and behavioral flexibility depend on the prefrontal cortex (PFC), the brain region most elaborated in primates. The prominent innervation by serotonin neurons and the dense expression of serotonergic receptors in the PFC suggest that serotonin is a major modulator of its function. The most abundant serotonin receptors in the PFC, 5-HT1A, 5-HT2A and 5-HT3A receptors, are selectively expressed in distinct populations of pyramidal neurons and inhibitory interneurons, and play a critical role in modulating cortical activity and neural oscillations (brain waves). Serotonergic signaling is altered in many psychiatric disorders such as schizophrenia and depression, where parallel changes in receptor expression and brain waves have been observed. Furthermore, many psychiatric drug treatments target serotonergic receptors in the PFC. Thus, understanding the role of serotonergic neurotransmission in PFC function is of major clinical importance. Here, we review recent findings concerning the powerful influences of serotonin on single neurons, neural networks, and cortical circuits in the PFC of the rat, where the effects of serotonin have been most thoroughly studied.  相似文献   

13.
We have studied the regulation of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor channels by serotonin signaling in pyramidal neurons of prefrontal cortex (PFC). Application of serotonin reduced the amplitude of AMPA-evoked currents, an effect mimicked by 5-HT(1A) receptor agonists and blocked by 5-HT(1A) antagonists, indicating the mediation by 5-HT(1A) receptors. The serotonergic modulation of AMPA receptor currents was blocked by protein kinase A (PKA) activators and occluded by PKA inhibitors. Inhibiting the catalytic activity of protein phosphatase 1 (PP1) also eliminated the effect of serotonin on AMPA currents. Furthermore, the serotonergic modulation of AMPA currents was occluded by application of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitors and blocked by intracellular injection of calmodulin or recombinant CaMKII. Application of serotonin or 5-HT(1A) agonists to PFC slices reduced CaMKII activity and the phosphorylation of AMPA receptor subunit GluR1 at the CaMKII site in a PP1-dependent manner. We concluded that serotonin, by activating 5-HT(1A) receptors, suppress glutamatergic signaling through the inhibition of CaMKII, which is achieved by the inhibition of PKA and ensuing activation of PP1. This modulation demonstrates the critical role of CaMKII in serotonergic regulation of PFC neuronal activity, which may explain the neuropsychiatric behavioral phenotypes seen in CaMKII knockout mice.  相似文献   

14.
Serotonin (or 5-hydroxytryptamine; 5-HT) and monoamine oxidase (MAO) are involved in several physiological functions and pathological conditions. We show that the serotonergic system and its development in zebrafish are similar to those of other vertebrates rendering zebrafish a good model to study them. Development of MAO expression followed a similar time course as the 5-HT system. MAO expression and activity were located in or adjacent to serotonergic nuclei and their targets, especially in the ventral hypothalamus. MAO mRNA was detected in the brain from 24 h post-fertilization and histochemical enzyme activity from 42 h post-fertilization. Deprenyl (100 μM) decreased MAO activity 34–74% depending on the age. Inhibition of MAO by deprenyl strongly increased 5-HT but not dopamine and noradrenaline levels. Deprenyl decreased 5-HT-immunoreactivity in serotonergic neurons and induced novel ectopic 5-HT-immunoreactivity neurons in the diencephalon in a manner dependent on 5-HT uptake. Deprenyl administration decreased locomotion, altered vertical positioning and increased heart rate. Treatment with p -chlorophenylalanine normalized 5-HT levels and rescued the behavioral alteration, indicating that the symptoms were 5-HT dependent. These findings suggest that zebrafish MAO resembles mammalian MAO A more than MAO B, metabolizing mainly 5-HT. Applications of this model of hyperserotonergism include pharmacological and genetic screenings.  相似文献   

15.
Serotonin is a conspicuous neuromodulator in the nervous system of many vertebrates and invertebrates. In previous experiments performed in the leech nervous system, we compared the effect of the amine released from endogenous sources [using selective serotonin reuptake inhibitors (SSRIs), e.g. fluoxetine] with that of bath-applied serotonin. The results suggested that the amine does not reach all its targets in a uniform way, but produces the activation of an interneuronal pathway that generated specific synaptic responses on different neurons. Taking into account that the release of the amine is often regulated at the presynaptic level, we have investigated whether autoreceptor antagonists mimic the SSRIs effect. We found that methiothepin (100 microM) produced similar effects than fluoxetine. To further test the hypothesis that endogenous serotonin produce its effect by acting locally at specific sites, we analyzed the effect of iontophoretic applications of serotonin. We found a site in the neuropil of the leech ganglia where serotonin application mimicked the effect of the SSRIs and the 5-HT antagonist. The results further support the view that the effect of serotonin exhibits a spatial specificity that can be relevant to understand its modulatory actions.  相似文献   

16.
Rats injected intracerebroventricularly with corticotropin releasing factor (CRF) at the level of the lateral ventricle or cisterna magna showed a dose-dependent increase in locomotor activity. The increase in locomotor activity from injections of CRF into the cisterna magna was blocked by a cold cream plug in the cerebral aqueduct. An identical plug failed to block the increase in locomotor activity produced by CRF injected into the lateral ventricle. Intracerebral injections of CRF produced a site specific increase in locomotor activity with the largest increases observed from CRF injected into the substantia innominata/lateral preoptic area. Results suggest that the locomotor activating effects of CRF may be due to an activation of CRF receptors in the ventral forebrain, a region rich in CRF cell bodies and projections.  相似文献   

17.
Endogenous depression is often accompanied by alterations in core parameters of circadian rhythms, and antidepressant treatments, including serotonergic drugs, sleep deprivation and exercise, alter circadian phase or period in humans or animal models. Antidepressants may act in part through the circadian system, and behavioral antidepressants through a common serotonergic path to the clock. This review evaluates the evidence from animal models that serotonin (5-HT) mediates phase-shifting effects of behavioral stimuli on circadian rhythms. In rodents, 'exercise' stimulated during the rest phase of the rest-activity cycle induces large phase shifts of circadian rhythms. These shifts can be mimicked by short-term sleep deprivation without intense activity. During wheel running or sleep deprivation, 5-HT release in the suprachiasmatic nucleus (SCN) circadian clock is significantly elevated. Lesions of 5-HT afferents to the SCN attenuate phase shifts or entrainment induced by activity in response to some stimuli (e.g., triazolam injections in hamsters, treadmill running in mice) but not others (e.g., novel wheel confinement in hamsters). Antagonists selective to 5HT1, 2 or 7 receptors do not attenuate shifts induced by wheel running, although 5-HT2/7 antagonists do partially block shifts to saline injections. 5-HT agonists (e.g., 8-OH-DPAT) induce large shifts in vitro, but much smaller shifts in vivo, particularly if administered directly to the SCN. Procedures for inducing 5-HT supersensitivity in vivo result in larger shifts to 8-OH-DPAT. 5-HT stimuli may affect the clock by direct and indirect pathways, particularly through the thalamic intergeniculate leaflet, and the role of these pathways may differ across species. At the level of the SCN, 5-HT likely acts through 5-HT7 receptors on neurons and possibly also glial cells. These receptors may be useful targets for the development of antidepressant drugs. In aggregate, the literature provides mixed support for the hypothesis that exercise or behavioral arousal shift the circadian clock by a 5-HT pathway; the role of indirect pathways, interactions with other transmitters, cellular adaptations to denervation, glial cells, and species differences remain to be more fully clarified. Serotonergic and behavioral stimuli provide an intriguing route to elucidate the circadian clockworks and their possible role in depression.  相似文献   

18.
In ovine pregnancy, as in human pregnancy, hypothalamus-pituitary-adrenal activity is chronically increased. These studies were designed to test the hypotheses that expression of serotonergic genes and responsiveness to serotonin are increased in pregnancy. We tested the stimulatory effect of an acute, intracerebroventricular injection of the serotonin reuptake inhibitor fluoxetine on plasma ACTH and cortisol in ewes during late pregnancy or postpartum. We also tested the effect of lower-dose, longer-term stimulation by intracerebroventricular infusion of fluoxetine in pregnant and nonpregnant ewes over 6 days. Overall, we found that the stimulatory effect of fluoxetine on ACTH and cortisol was not significantly different between late-gestation and nonpregnant ewes, although the effect of acute fluoxetine administration was inversely related to plasma progesterone concentrations. Also, there were no differences in hypothalamic expression of the glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone, AVP, the serotonin reuptake transporter, or the serotonin [5-hydroxytryptamine (5-HT)] receptors 5-HT(1A) and 5-HT(2A) with pregnancy or fluoxetine treatment. However, chronic fluoxetine infusion reduced food intake in the nonpregnant, but not pregnant, ewes. Expression of proopiomelanocortin mRNA in the hypothalamus was reduced in pregnant compared with nonpregnant ewes. Our results indicate that pregnancy does not increase responsiveness of ACTH and cortisol to serotonergic stimulation but, rather, that progesterone reduces the ACTH response. In addition, we found a reduced ability of serotonin to inhibit feeding in the pregnant ewes, consistent with a reduction in anorexic mechanisms in the pregnant state.  相似文献   

19.
Intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF; 25 ng) given to male rough-skinned newts (Taricha granulosa) stimulated locomotor activity tested in a circular arena starting 35 min after the injection. The CRF receptor antagonist, alpha-helical CRF9-41 (ahCRF; 250 or 500 ng), injected icv concurrently with CRF blocked CRF-induced locomotor activity. In contrast, icv injection of ahCRF had no effect on spontaneous locomotor activity. Other studies examined the effect of ahCRF on the elevated locomotor activity that was observed when the animals were stressed (handled or placed in warm water). The CRF antagonist dose dependently attenuated the response to either handling or warm stress tested 2 hr after drug treatment. We also examined the effect of the alpha 2-adrenergic agonist, clonidine, on spontaneous and CRF-induced locomotor activity. Clonidine injected icv dose dependently suppressed spontaneous locomotor activity but not CRF-induced locomotor activity. These studies support the hypothesis that endogenous CRF is involved in mediating stress-induced locomotor activity and indicate that the effects of CRF on locomotor activity are independent of activation of the alpha 2-adrenergic system.  相似文献   

20.
Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 5,7-dihydroxytryptamine (5,7-DHT) on striatal levels of dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites, as well as on locomotor activity were investigated in C57BL/6 mice. The results showed that MPTP significantly increased locomotor activity and decreased striatal DA levels. However, injection of the serotonergic neurotoxin 5,7-DHT in the striatum, either alone or following high doses of MPTP, significantly decreased locomotor activity, and concomitantly decreased striatal levels of 5-HT and 5-HIAA. This study suggests that the increased locomotor activity may be due to increased striatal serotonergic activity which overcompensates for the DA deficiency. The locomotor hypoactivity, induced by 5,7-DHT, might be due to the decreased striatal levels of 5-HT and 5-HIAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号