首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The computer program HYLAS generates from a standard DNA lettersequence a three-dimensional space curve (H curve) which embodiesthe entire information content of the original nucleotide sequence.The program can display H curves either as two-dimensional (frontand side view) projections or as stereo-pair images. The curvescan be marked at specific nucleotide locations, annotated, rotatedfor observation from any viewing angle, and manipulated forconvenient side-by-side comparisons. Unlike the cumbersome lettersequences, H curves can be drastically condensed in size withoutlosing their ability to reflect the global nucleotide-distributionpattern of the entire DNA sequence. Often, biologically importantloci can be visually identified on the H curves. HYLAS is writtenin FORTRAN with separate mainframe (IBM- VM/CMS) and microcomputer(MS-DOS) versions. It uses the Tektronix-TCS library of graphicsubroutines. Received on October 24, 1988; accepted on July 15, 1989  相似文献   

4.
Local supercoil-stabilized DNA structures   总被引:17,自引:0,他引:17  
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.  相似文献   

5.
Abstract

The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.  相似文献   

6.
Nucleotide excision repair and anti-cancer chemotherapy   总被引:2,自引:0,他引:2  
Eddie Reed 《Cytotechnology》1998,27(1-3):187-201
DNA repair is an important effector of anti-cancer drug resistance. In recent years, it has become apparent that DNA repair is an extremely complex process. Processes within DNA repair that may contribute to one or more drug resistance phenotypes include; O-6-alkyltransferase activity, base excision repair, mismatch repair, nucleotide excision repair, and gene specific repair. Clearly, several of these processes may show increased activity within any single cell, or tumor, at any one time. This review attempts to touch briefly upon the question of the distinctions between each of these specific pathways; and then seeks to expand on nucleotide excision repair as a possible effector of cellular and clinical resistance to platinum-based anticancer therapy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Transferred DNA (T-DNA) of the tumor-inducing (Ti) plasmid is transferred from Agrobacterium tumefaciens to plant cells and is stably integrated into the plant nuclear genome. By the inverse polymerase chain reaction DNA fragments were amplified that contained the T-DNA/plant DNA junctions from the total DNA of a transgenic tobacco plant that had a single copy of the T-DNA in a repetitive region of its genome. A DNA fragment containing the target site was amplified from the total DNA of non-transformed tobacco by the polymerase chain reaction using high-stringency conditions. Comparison of the nucleotide sequence of the target site with those of the T-DNA/plant DNA junctions revealed that various duplications of short stretches of nucleotide sequences around the target and in the incoming T-DNA had accompanied the integration of the T-DNA. A deletion of 16 bp at the target site was also found and the target site was similar, in terms of nucleotide sequence, to regions around the breakpoints of the T-DNA. This finding provides a clear example of the occurrence of complex rearrangements during the integration of T-DNA.  相似文献   

8.
A 1.7 kilobase HindIII fragment of Saccharomyces cerevisiae DNA was cloned by cross-hybridization with the Escherichia coli secY gene. The complete nucleotide sequence of the 2.6 kb fragment of the yeast genomic DNA containing the cross-hybridizing HindIII fragment was determined. The sequence showed no apparent similarity with that of the E. coli secY gene with the exception of a completely matched sequence of 21 bp, but it contained a 1,623 nucleotide open reading frame coding for a protein of 541 amino acids with a calculated Mr of 59,600. The N-terminal portion of 303 residues of the predicted sequence was homologous to the cytosolic domain of the alpha-subunit of the signal recognition particle receptor (SR alpha), including consensus sequence elements for a GTP binding site, whereas the C-terminal portion of 238 residues had an unusual methionine-rich domain containing several repetitive sequences. An mRNA of 2.0 kb was detected on Northern blotting analysis. The predicted sequence was 48% identical with the reported sequences of the 54K subunit of the mammalian signal recognition particle (SRP54) (Romisch K. et al. (1989) Nature 340, 478-483; Bernstein, H.D. et al. (1989) Nature 340, 482-486). We designated this gene as SRH1 (SRP54 homologue). Gene disruption experiments showed that the SRH1 gene product is essential for cell growth.  相似文献   

9.
Formation and enzymatic properties of the UvrB.DNA complex   总被引:2,自引:0,他引:2  
The UvrA, UvrB, and UvrC proteins collectively catalyze the dual incision of a damaged DNA strand in an ATP-dependent reaction. We previously reported (Orren, D. K., and Sancar, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 5237-5241) that UvrA delivers UvrB to damaged sites in DNA; upon addition of UvrC to these UvrB.DNA complexes, the DNA is incised. In the present study, we have further characterized both the delivery of UvrB to DNA and the subsequent incision process, with emphasis on the role of ATP in these reactions. The UvrA-dependent delivery of UvrB onto damaged DNA is relatively slow (kon approximately 6 x 10(4) M-1 s-1) and requires ATP hydrolysis (Km = 120 microM). Although ATP enhances the stability of UvrB.DNA complexes (koff = 8.5 x 10(-5) s-1), the isolated UvrB.DNA complexes do not contain any covalently attached or stably bound nucleotide. However, ATP binding is required for the UvrC-dependent dual incision of DNA bound by UvrB. Interestingly, adenosine 5'-(3-O-thio)triphosphate can substitute for ATP at this step. The Km for ATP during incision is 2 microM, but ATP is not hydrolyzed at a detectable level during the incision reaction. The incisions made by UvrB-UvrC are on both sides of the adduct and result in the excision of the damaged nucleotide.  相似文献   

10.
Chi LM  Lam SL 《FEBS letters》2006,580(27):6496-6500
Slipped frameshift intermediates can occur when DNA polymerase slows or stalls at sites of DNA lesions. However, this phenomenon is much less common when unmodified DNA is replicated. In order to study the effect of templating bases on the alignment of primer-templates, NMR structural investigation has been performed on primer-template oligonucleotide models which mimic the situation that dNTP has just been incorporated opposite template. NMR evidence reveals the occurrence of misalignment when dGTP is incorporated opposite template T with a downstream nucleotide C. Depending on the template sequence, further extension of the primer can lead to realignment.  相似文献   

11.
Mechanisms of spontaneous and chemically induced point mutations' emergence in DNA have theoretically been investigated using the statistical weight method. We have analysed 12 nucleotide sequences containing 95 point spontaneous mutations and 3 sequences comprising 30 mutations induced by such mutagens as 4'-hydroxymethyl-4,5',8-threemethylpsoralene, natrium bisulfite, hydroxylamine. The possibility of occurrence of point mutations by repair correction of heteroduplexes formed via mispairing of imperfect direct and inverted repeats in DNA has been studied. Statistically reliable connection of position of spontaneous mutations in DNA with repeats has been revealed for a number of nucleotide sequences. Statistically reliable connection of mutations induced by 4'-hydroxymethyl-4,5',8-threemethylpsoralene with imperfect repeats is also shown.  相似文献   

12.
Genome analysis with distance to the nearest dissimilar nucleotide   总被引:1,自引:0,他引:1  
DNA may be represented by sequences of four symbols, but it is often useful to convert those symbols into real or complex numbers for further analysis. Several mapping schemes have been used in the past, but most of them seem to be unrelated to any intrinsic characteristic of DNA. The objective of this work was to study a mapping scheme that is directly related to DNA characteristics, and that could be useful in discriminating between different species.Recently, we have proposed a methodology based on the inter-nucleotide distance, which proved to contribute to the discrimination among species. In this paper, we introduce a new distance, the distance to the nearest dissimilar nucleotide, which is the distance of a nucleotide to first occurrence of a different nucleotide. This distance is related to the repetition structure of single nucleotides. Using the information resulting from the concatenation of the distance to the nearest dissimilar and the inter-nucleotide distance, we found that this new distance brings additional discriminative capabilities. This suggests that the distance to the nearest dissimilar nucleotide might contribute with useful information about the evolution of the species.  相似文献   

13.
Peter B.  Best 《Journal of Zoology》1994,232(2):175-189
From the seasonal occurrence of 11 stranded nconates, the earliest and latest observations of possible calving behaviour, and the seasonal incidence of calves in shore-based counts, the extent of the calving season for southern right whales off South Africa can be characterized as from late June to late October, with a peak in August. The occurrence of 89 'new' calves located during monthly photogrammetric flights between July or August and November indicated that 50% were born by 1 September in 1988 and by 15 August in 1989, and that the effective calving season (in which 95.5% of calves are estimated to have been born) lasted 118 days in each year. From regression analysis of the lengths of 221 foetuses and their dates of death, and assuming a mean date of birth of 24 August, the duration of the linear phase of foetal growth is estimated to be 325 days, and the mean size at birth 6-1 m. Uncertainty over the duration of the initial, non-linear phase of foetal growth results in alternative estimates of 357 or 396 days for the total length of gestation. Foetuses of smaller females seem to be conceived later (or experience a longer initial, non-linear phase of foetal growth) than those of larger females. The apparent rarity of adult females in coastal waters in the year in which they are presumed to conceive is attributed to either a brief residence time or the possibility that conceptions may occur well outside coastal waters.  相似文献   

14.
Several species-specific characteristics of genome organization that are superimposed on its coding aspects were proposed earlier, including genome signature (GS), genome accent, and compositional spectrum (CS). These notions could be considered as representatives of genome dialect (GD). We measured within the Proteobacteria some GD representatives, the relative abundance of dinucleotides or GS, the profiles of occurrence of 10 nucleotide words (CS), and the profiles of occurrence of 20 nucleotide words, using a degenerate two-letter alphabet (purine-pyrimidine compositional spectra [PPCS]). Here, we show that the evolutionary distances between DNA repair and recombination orthologous enzymes (especially those of the nucleotide excision repair system) are highly correlated with PPCS and GS distances. Orthologous proteins involved in structural or metabolic processes (control group) have significantly lower correlations of their evolutionary distances with the PPCS and GS distances. We hypothesize that the high correlation of the evolutionary distances of the DNA repair orthologous enzymes with their GD is a result of the coevolution of the DNA repair enzymes' structures and GDs. Species GDs could be substantially influenced by the function of DNA polymerase I (the bacterial major DNA repair polymerase). This might cause the correlation of species GDs differentiation with evolutionary changes of species DNA polymerase I. Simultaneously, the structures of DNA repair-recombination enzymes might be evolutionarily sensitive and responsive to changes in the structure of their substrate-the DNA (including those that are represented by GD differentiation). We further discuss the rationale and mechanisms of the hypothesized coevolution. We suggest that stress might be an important cause of changes in the repair-recombination genes and the GD and the trigger of the aforementioned coevolution process. Other triggers might be massive horizontal gene transfer and ecological selection.  相似文献   

15.
G Phear  M Meuth 《Mutation research》1989,214(2):201-206
To determine the effect of deoxyribonucleoside triphosphate pool imbalances on the accuracy of DNA replication within the cell, we examined the base pair alterations induced by excess intracellular dTTP at the adenine phosphoribosyl transferase (aprt) locus of CHO cells. The mutations were predominantly simple (C----T) transitions (38/44) and transversions (G----T, 5/44) explicable by the misincorporation of the DNA precursor supplied in excess (dTTP). Only one small deletion was observed. The context of the mutations is notable as the nucleotide incorporated after the error was usually the nucleotide in excess for the great majority of the transitions but not the transversions. As next nucleotide effects are characteristic of replication complexes having proofreading exonuclease activity, our data indicate that this mechanism functions within the cell to control the occurrence of some types of replicational errors.  相似文献   

16.
It is now well-established that compositional bias in DNA sequences can adversely affect phylogenetic analysis based on those sequences. Phylogenetic analyses based on protein sequences are generally considered to be more reliable than those derived from the corresponding DNA sequences because it is believed that the use of encoded protein sequences circumvents the problems caused by nucleotide compositional biases in the DNA sequences. There exists, however, a correlation between AT/GC bias at the nucleotide level and content of AT- and GC-rich codons and their corresponding amino acids. Consequently, protein sequences can also be affected secondarily by nucleotide compositional bias. Here, we report that DNA bias not only may affect phylogenetic analysis based on DNA sequences, but also drives a protein bias which may affect analyses based on protein sequences. We present a striking example where common phylogenetic tools fail to recover the correct tree from complete animal mitochondrial protein-coding sequences. The data set is very extensive, containing several thousand sites per sequence, and the incorrect phylogenetic trees are statistically very well supported. Additionally, neither the use of the LogDet/paralinear transform nor removal of positions in the protein alignment with AT- or GC-rich codons allowed recovery of the correct tree. Two taxa with a large compositional bias continually group together in these analyses, despite a lack of close biological relatedness. We conclude that even protein-based phylogenetic trees may be misleading, and we advise caution in phylogenetic reconstruction using protein sequences, especially those that are compositionally biased. Received: 19 February 1998 / Accepted: 28 August 1998  相似文献   

17.
Zymomonas mobilis plasmid pZMO3, equivalent to pZM2 the complete nucleotide sequence of which has been published (Misawa and Nakamura, 1989), expressed mobilisation functions in Escherichia coli JM83 and RR1 when fused to the HindIII site of pUC19. Experimental evidence based on filter mating and DNA sequence analysis supports that an ORF of pZMO3 coding for a 66 kd protein should be responsible for self-mobilisation ability.  相似文献   

18.
A synthetic analog of an abasic site in DNA is efficiently repaired by a short-patch repair mechanism in soluble extracts of Xenopus laevis oocytes (Y. Matsumoto and D. F. Bogenhagen, Mol. Cell. Biol. 9:3750-3757, 1989). We present a detailed analysis of the repair mechanism, using extracts depleted of endogenous nucleotide pools. ATP was required for repair with a sharp optimal concentration of 5 mM. The initial rate of repair was increased by preincubation of the DNA in the extract in the presence of ATP. During this preincubation, the DNA was cleaved on the 5' side of the lesion by a class II apurinic-apyrimidinic endonuclease, but removal of the abasic sugar residue was not observed prior to addition of deoxynucleotides to the reaction. Immediately following DNA synthesis, excision and ligation proceeded in a coordinated manner to complete repair. DNA preincubated in the extract in the absence of deoxynucleotides remained associated with repair enzymes during gel filtration. These observations suggest that the enzymes involved in concerted repair of the abasic site form a complex on DNA.  相似文献   

19.
The importance of maintaining DNA methylation patterns and faithful transmission of these patterns during cell division to ensure appropriate gene expression has been known for many decades now. It has largely been assumed that the symmetrical nature of CpG motifs, the most common site for DNA methylation in mammals, together with the presence of maintenance methylases able to methylate newly synthesised DNA, ensures that there is concordance of methylation on both strands. However, although this assumption is compelling in theory, little experimental evidence exists that either supports or refutes this assumption. Here, we have undertaken a genome‐wide single‐nucleotide resolution analysis to determine the frequency with which hemimethylated CpG sites exist in sheep muscle tissue. Analysis of multiple independent samples provides strong evidence that stably maintained hemimethylation is a very rare occurrence, at least in this tissue. Given the rarity of stably maintained hemimethylation, next‐generation sequencing data from both DNA strands may be carefully combined to increase the accuracy with which DNA methylation can be measured at single‐nucleotide resolution.  相似文献   

20.
Physiological variants of Saccharomyces cerevisiae and Kloeckera apiculata have been identified in oil palm wine and cashew juice from Nigeria. Genomic DNA from the four S. cerevisiae variants had a % G + C of 36–41% while that of K. apiculata was 32.2%. Fermentation of cashew juice produced wine of alcoholic contents of 10% with S. cerevisiae , 8% with K. apiculata and 9.3% with both yeasts simultaneously. and accepted 31 August 1989  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号