首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We studied the homeostatic secretory response of catecholamine secretion elicited by progressive bronchoconstriction in 18 swine in vivo. The potential reserve of the sympathetic nervous system (SNS) was first assessed by exogenous nicotinic stimulation with 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP). A dose of 250 micrograms/kg iv DMPP caused an increase in plasma norepinephrine (NE) concentration from 207 +/- 86 (basal) to 2,625 +/- 448 pg/ml (P less than 0.02) and in plasma epinephrine (EPI) from 10 +/- 5.0 to 1,410 +/- 432 pg/ml (P less than 0.05) in four swine. In four other swine, bronchoconstriction induced by aerosolized prostaglandin F2 alpha caused approximately a fivefold increase in airway resistance without hemodynamic changes. No increase in plasma EPI was observed. However, plasma NE increased from 330 +/- 131 to 1,540 +/- 182 pg/ml (P less than 0.02). In five swine receiving aerosolized acetylcholine (ACh), similar changes in airways resistance were not associated with significant changes in catecholamine concentration when mean arterial blood pressure (MAP) was unchanged. However, inhalation of sufficient ACh to cause a greater than 10% decrease in MAP caused progressive increase in catecholamine secretion. Plasma EPI increased from 32 +/- 16 (MAP = 124 +/- 7 Torr) to 1,165 +/- 522 pg/ml (MAP = 94 +/- Torr). Hypoxemia that occurred with bronchoconstriction (greater than or equal to 50 Torr) did not cause catecholamine secretion. However, severe hypoxemia (PO2 less than 30 Torr) caused large increases in plasma EPI concentrations from 84 +/- 27 to 1,463 +/- 945 pg/ml (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The present study investigates the integrity of the blood-brain barrier to H+ or HCO3- during acute plasma acidosis in 35 newborn piglets anesthetized with pentobarbital sodium. Cerebrospinal fluid acid-base balance, cerebral blood flow (CBF), and cerebral oxygenation were measured after infusion of HCl (0.6 N, 0.191-0.388 ml/min) for a period of 1 h at a constant arterial PCO2 of 35-40 Torr. HCl infusion resulted in decreased arterial pH from 7.38 +/- 0.01 to 7.00 +/- 0.02 (P less than 0.01). CBF measured by the tracer microsphere technique was decreased by 12% from 69 +/- 6 to 61 +/- 4 ml.min-1.100 g-1 (P less than 0.05). Infusion of 0.6 N NaCl as a hypertonic control had no effect on CBF. Cerebral metabolic rate for O2 and O2 extraction was not significantly changed from control (3.83 +/- 0.20 ml.min-1.100 g-1 and 5.7 +/- 0.6 ml/100 ml, respectively) during acid infusion. Cerebral venous PO2 was increased from 41.6 +/- 2.1 to 53.8 +/- 4.0 Torr by HCl infusion (P less than 0.02) associated with a shift in O2-hemoglobin affinity of blood in vivo from 38 +/- 2 to 50 +/- 1 Torr. Cisternal cerebrospinal fluid pH decreased from 7.336 +/- 0.014 to 7.226 +/- 0.027 (P less than 0.005), but cerebrospinal fluid HCO3- concentration was not changed from control (25.4 +/- 1.0 meq/l). These data suggest that there is a functional blood-brain barrier in newborn piglets, that is relatively impermeable to HCO3- or H+ and maintains cerebral perivascular pH constant in the face of acute severe arterial acidosis. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effects of acetazolamide on cerebral acid-base balance   总被引:3,自引:0,他引:3  
Acetazolamide (AZ) inhibition of brain and blood carbonic anhydrase increases cerebral blood flow by acidifying cerebral extracellular fluid (ECF). This ECF acidosis was studied to determine whether it results from high PCO2, carbonic acidosis (accumulation of H2CO3), or lactic acidosis. Twenty rabbits were anesthetized with pentobarbital sodium, paralyzed, and mechanically ventilated with 100% O2. The cerebral cortex was exposed and fitted with thermostatted flat-surfaced pH and PCO2 electrodes. Control values (n = 14) for cortex ECF were pH 7.10 +/- 0.11 (SD), PCO2 42.2 +/- 4.1 Torr, PO2 107 +/- 17 Torr, HCO3- 13.8 +/- 3.0 mM. Control values (n = 14) for arterial blood were arterial pH (pHa) 7.46 +/- 0.03 (SD), arterial PCO2 (PaCO2) 32.0 +/- 4.1 Torr, arterial PO2 (PaO2) 425 +/- 6 Torr, HCO3- 21.0 +/- 2.0 mM. After intravenous infusion of AZ (25 mg/kg), end-tidal PCO2 and brain ECF pH immediately fell and cortex PCO2 rose. Ventilation was increased in nine rabbits to bring ECF PCO2 back to control. The changes in ECF PCO2 then were as follows: pHa + 0.04 +/- 0.09, PaCO2 -8.0 +/- 5.9 Torr, HCO3(-)-2.7 +/- 2.3 mM, PaO2 +49 +/- 62 Torr, and changes in cortex ECF were as follows: pH -0.08 +/- 0.04, PCO2 -0.2 +/- 1.6 Torr, HCO3(-)-1.7 +/- 1.3 mM, PO2 +9 +/- 4 Torr. Thus excess acidity remained in ECF after ECF PCO2 was returned to control values. The response of intracellular pH, high-energy phosphate compounds, and lactic acid to AZ administration was followed in vivo in five other rabbits with 31P and 1H nuclear magnetic resonance spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of induced metabolic acidosis (48 h of NH4Cl ingestion, BE - 10.6 +/- 1.1) and alkalosis (43 h of NaHCO3- ingestion BE 8.8 +/- 1.6) on arterial and lumber CSF pH, Pco2, and HCO3- and ventilatory responses to CO2 and to hypoxia was assessed in five healthy men. In acidosis lumbar CSF pH rose 0.033 +/- 0.02 (P less than 0.05). In alkalosis CSF pH was unchanged. Ventilatory response lines to CO2 at high O2 were displaced to the left in acidosis (9.0 +/- 1.4 Torr) and to the right in alkalosis (4.5 +/- 1.5 Torr) with no change in slope. The ventilatory response to hypoxia (delta V40) was increased in acidosis (P less than 0.05) and it was decreased in four subjects in alkalosis (P, not significant). We conclude that the altered ventilatory drives of steady-state metabolic imbalance are mediated by peripheral chemoreceptors, and in acidosis the medullary respiratory chemoreceptor drive is decreased.  相似文献   

5.
Our aim was to determine the effects of carotid body denervation (CBD) on the ventilatory responses to focal acidosis and ibotenic acid (IA) injections into the medullary raphe area of awake, adult goats. Multiple microtubules were chronically implanted into the midline raphe area nuclei either before or after CBD. For up to 15 days after bilateral CBD, arterial PCO2 (PaCO2) (13.3 +/- 1.9 Torr) was increased (P < 0.001), and CO2 sensitivity (-53.0 +/- 6.4%) was decreased (P <0.001). Thereafter, resting PaCO2 and CO2 sensitivity returned (P <0.01) toward control, but PaCO2 remained elevated (4.8 +/- 1.9 Torr) and CO2 sensitivity reduced (-24.7 +/- 6.0%) > or =40 days after CBD. Focal acidosis (FA) at multiple medullary raphe area sites 23-44 days post-CBD with 50 or 80% CO(2) increased inspiratory flow (Vi), tidal volume (Vt), metabolic rate (VO2), and heart rate (HR) (P <0.05). The effects of FA with 50% CO2 after CBD did not differ from intact goats. However, CBD attenuated (P <0.05) the increase in Vi, Vt, and HR with 80% CO2, but it had no effect on the increase in VO2. Rostral but not caudal raphe area IA injections increased Vi, BP, and HR (P < 0.05), and these responses were accentuated (P <0.001) after CBD. CO2 sensitivity was attenuated (-20%; P <0.05) <7 days after IA injection, but thereafter it returned to prelesion values in CBD goats. We conclude the following: 1) the attenuated response to FA after CBD provides further evidence that the carotid bodies provide a tonic facilitory input into respiratory control centers, 2) the plasticity after CBD is not due to increased raphe chemoreceptor sensitivity, and 3) the "error-sensing" function of the carotid body blunts the effect of strong stimulation of the raphe.  相似文献   

6.
We have compared the ventilatory responses of intact and carotid body-denervated (CBD) goats to moderate [partial pressure of O2 in arterial blood; (Pao2) approximately 44 Torr] and severe (Pao2 approximately 33 Torr) many time points for up to 7 days of hypobaria. In the intact group there were significant time-dependent decreases in partial pressure of CO2 in arterial blood (PaCO2) in both moderate and severe hypoxemia (approximately-7 and -11 Torr) that were largely complete by 8 h of hypoxemia and maintained throughout. Acute restoration of normoxia in chronically hypoxic intact animals produced time-dependent increases in Paco2 over 2 h, but hypocapnia persisted relative to sea-level control. Arterial plasma [HCO3-] and [H+] decreased, and [Cl-] increased with a time course and magnitude consistent with developing hypocapnia. Chronic CBD, per se, resulted in a sustained, partially compensated respiratory acidosis, as PaCO2 rose 6 Torr and base excess rose 3 mEq/1, [Cl-] fell 1 mEq/1, and pHa fell 0.01 units. During exposure to identical levels of arterial hypoxemia as in the intact group. CBD animals showed no significant changes in PaCO2, [H+]a, or [HCO3-]a at any time during moderate or severe hypoxemia. Plasma [C1-] remained within the normal range throughout exposure to moderate hypoxia and increased in severe hypoxia. In a few instances some hypocapnia was observed, but this was highly inconsistent and was always less than one-third of that observed in intact goats. In contrast to intact goats, acute restorations of normoxia in the chronically hypoxic CBD goats always caused hyperventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We studied blood gases in ponies to assess the relationship of alveolar ventilation (VA) to pulmonary CO2 delivery during moderate treadmill exercise. In normal ponies for 1.8, 3, or 6 mph, respectively, partial pressure of CO2 in arterial blood (PaCO2) decreased maximally by 3.1, 4.4, and 5.7 Torr at 30-90 s of exercise and remained below rest by 1.4, 2.3, and 4.5 Torr during steady-state (4-8 min) exercise (P less than 0.01). Partial pressure of O2 in arterial blood (PaO2) and arterial pH, (pHa) also reflected hyperventilation. Mixed venus CO2 partial pressure (PVCO2) decreased 2.3 and 2.9 Torr by 30 s for 3 and 6 mph, respectively (P less than 0.05). In work transitions either from 1.8 to 6 mph or from 6 mph to 1.8 mph, respectively, PaCO2 either decreased 3.8 Torr or increased 3.3 Torr by 45 s of the second work load (P less than 0.01). During exercise in acute (2-4 wk) carotid body denervated (CBD) ponies at 1.8, 3, or 6 mph, respectively, PaCO2 decreased maximally below rest by 9.0, 7.6, and 13.2 Torr at 30-45 s of exercise and remained below rest by 1.3, 2.3, and 7.8 Torr during steady-state (4-8 min) exercise (P less than 0.1). In the chronic (1-2 yr) CBD ponies, the hypocapnia was generally greater than normal but less than in the acute CBD ponies. We conclude that in the pony 1) VA is not tightly matched to pulmonary CO2 delivery during exercise, particularly during transitional states, 2) the exercise hyperpnea is not mediated by PaCO2 or PVCO2, and 3) during transitional states in the normal pony, the carotid bodies attenuate VA drive thereby reducing arterial hypocapnia.  相似文献   

8.
Pentobarbital sodium-anesthetized rabbits received 10-min infusions of acetic, lactic, or propionic acid delivered via a catheter to the right atrium at a rate of 1 mmol/min (n = 14). Arterial [H+] increased by 35.8 +/- 7.6 (SD) nmol/l, a decrease in pH of 0.27 +/- 0.04. By the end of the infusion period respiratory frequency (f), tidal volume (VT), and minute ventilation (V) had increased by 15.5 +/- 6.2 breaths/min, 7.3 +/- 2.7 ml, and 0.86 +/- 0.34 l/min, respectively. Arterial PCO2 (PaCO2) increased initially, but isocapnia was established during the latter half of the infusion (delta PaCO2 = 0.4 +/- 2.0 Torr). Bilateral cervical vagotomy eliminated the f response to acid infusions (n = 9, delta f = 0.6 +/- 2.4 breaths/min). The increase in VT (12.6 +/- 3.1 ml) was greater, but that in V (0.39 +/- 0.11 l/min) was less than in intact animals (P less than 0.05). PaCO2 remained elevated throughout the infusion (delta PaCO2 = 5.5 +/- 2.6 Torr), resulting in a greater rise in arterial [H+] (delta[H+]a = 53.6 +/- 6.6 nmol/l, delta pHa = -0.37 +/- 0.04). It is concluded that vagal afferents play a role in the f response to acute metabolic acidosis in rabbits.  相似文献   

9.
We determined the effects of carotid body excision (CBX) on eupneic ventilation and the ventilatory responses to acute hypoxia, hyperoxia, and chronic hypoxia in unanesthetized rats. Arterial PCO2 (PaCO2) and calculated minute alveolar ventilation to minute metabolic CO2 production (VA/VCO2) ratio were used to determine the ventilatory responses. The effects of CBX and sham operation were compared with intact controls (PaCO2 = 40.0 +/- 0.1 Torr, mean +/- 95% confidence limits, and VA/VCO2 = 21.6 +/- 0.1). CBX rats showed 1) chronic hypoventilation with respiratory acidosis, which was maintained for at least 75 days after surgery (PaCO2 = 48.4 +/- 1.1 Torr and VA/VCO2 = 17.9 +/- 0.4), 2) hyperventilation in response to acute hyperoxia vs. hypoventilation in intact rats, 3) an attenuated increase in VA/VCO2 in acute hypoxemia (arterial PO2 approximately equal to 49 Torr), which was 31% of the 8.7 +/- 0.3 increase in VA/VCO2 observed in control rats, 4) no ventilatory acclimatization between 1 and 24 h hypoxia, whereas intact rats had a further 7.5 +/- 1.5 increase in VA/VCO2, 5) a decreased PaCO2 upon acute restoration of normoxia after 24 h hypoxia in contrast to an increased PaCO2 in controls. We conclude that in rats carotid body chemoreceptors are essential to maintain normal eupneic ventilation and to the process of ventilatory acclimatization to chronic hypoxia.  相似文献   

10.
The major objective of this study was to test the hypothesis that in ponies the change in plasma [H+] resulting from a change in PCO2 (delta H+/delta PCO2) is less under acute in vivo conditions than under in vitro conditions. Elevation of inspired CO2 and lowering of inspired O2 (causing hyperventilation) were used to respectively increase and decrease arterial PCO2 (Paco2) by 5-8 Torr from normal. Arterial and mixed venous blood were simultaneously sampled in 12 ponies during eucapnia and 5-60 min after Paco2 had changed. In vitro data were obtained by equilibrating blood in a tonometer at five different levels of PCO2. The in vitro slopes of the H+ vs. PCO2 relationships were 0.73 +/- 0.01 and 0.69 +/- 0.01 neq.1-1.Torr-1 for oxygenated and partially deoxygenated blood, respectively. These slopes were greater (P less than 0.001) than the in vivo H+ vs. PCO2 slopes of 0.61 +/- 0.03 and 0.57 +/- 0.03 for arterial and mixed venous blood, respectively. The delta HCO3-/delta pH (Slykes) was 15.4 +/- 1.1 and 17.0 +/- 1.1 for in vitro oxygenated and partially deoxygenated blood, respectively. These values were lower (P less than 0.001) than the in vivo values of 23.3 +/- 2.7 and 25.2 +/- 4.7 Slykes for arterial and mixed venous blood, respectively. In vitro, plasma strong ion difference (SID) increased 4.5 +/- 0.2 meq/l (P less than 0.001) when Pco2 was increased from 25 to 55 Torr. A 3.5-meq/l decrease in [Cl-] (P less than 0.001) and a 1.3 +/- 0.1 meq/l increase in [Na+] (P less than 0.001) accounted for the SID change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We studied the sympathetic neural response on airways to hypotensive stimuli in 19 swine in vivo. The effects of pharmacologically induced hypotension with nitroprusside (NTP) and hypotension elicited by intravenous compound 48/80 (48/80), a mast cell degranulating agent, were compared after equivalent reductions in mean arterial blood pressure (MAP). Reduction of the MAP to 60% of base line with NTP in six swine caused an increase in plasma epinephrine (E) from 60 +/- 28 to 705 +/- 276 pg/ml (P = 0.032) and plasma norepinephrine (NE) from 270 +/- 46 to 796 +/- 131 pg/ml (P = 0.032). Comparable reduction in MAP elicited with 48/80 in six other swine caused a substantially greater increase in both plasma E (9,581 +/- 4,147 pg/ml; P = 0.012 vs. NTP group) and plasma NE (2,239 +/- 637 pg/ml; P = 0.041 vs. NTP group). Catecholamine secretion attenuated mediator-induced changes in lung resistance (RL). In animals receiving 48/80, RL increased from 2.97 +/- 0.31 to 7.44 +/- 0.56 cmH2O.l-1.s. In animals having ganglionic blockade with 7.5 mg/kg iv hexamethonium and beta-adrenergic blockade with propranolol (4.0 mg/kg iv followed by 40 micrograms/kg-1.min-1), comparable doses of 48/80 caused an increase in RL to 18.6 +/- 4.55 cmH2O.l-1.s (P less than 0.04 vs. swine receiving neither hexamethonium nor propranolol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Seven human spinal cord-lesioned subjects (SPL) underwent electrically induced muscle contractions (EMC) of the quadriceps and hamstring muscles for 10 min: 5 min control, 2 min with venous return from the legs occluded, and 3 min postocclusion. Group mean changes in CO2 output compared with rest were +107 +/- 30.6, +21 +/- 25.7, and +192 +/- 37.0 (SE) ml/min during preocclusion, occlusion, and postocclusion EMC, respectively. Mean arterial CO2 partial pressure (PaCO2) obtained from catheterized radial arteries at 15- to 30-s intervals showed a significant (P less than 0.05) hypocapnia (36.2 Torr) during occlusion and a significant (P less than 0.05) hypercapnia (38.1 Torr) postocclusion relative to a group mean preocclusion EMC PaCO2 of 37.5 Torr. Relative to preocclusion EMC, expired ventilation (VE) decreased during occlusion and increased after release of occlusion. However, changes in VE always occurred after changes in end-tidal PCO2 (mean 41 s after occlusion and 10 s after release of occlusion). In the two subjects investigated during hyperoxia, the VE and PaCO2 responses to occlusion and release did not differ from normoxia. We conclude that the data do not support mediation of the EMC hyperpnea in SPL by humoral mechanisms that others have proposed for mediation of the exercise hyperpnea in spinal cord-intact humans.  相似文献   

13.
Hypoxia potentiates the ventilatory response to exercise, eliciting a greater decrease in arterial PCO2 (PaCO2) from rest to exercise than in normoxia. The mechanism of this hypoxia-exercise interaction requires intact carotid chemoreceptors. To determine whether carotid chemoreceptor stimulation alone is sufficient to elicit the mechanism without whole body hypoxia, ventilatory responses to treadmill exercise were compared in goats during hyperoxic control conditions, moderate hypoxia (PaO2 = 38-44 Torr), and peripheral chemoreceptor stimulation with the peripheral dopamine D2-receptor antagonist, domperidone (Dom; 0.5 mg/kg iv). Measurements with Dom were made in both hyperoxia (Dom) and hypoxia (Dom/hypoxia). Finally, ventilatory responses to inspired CO2 at rest were compared in each experimental condition because enhanced CO2 chemoreception might be expected to blunt the PaCO2 decrease during exercise. At rest, PaCO2 decreased from control with Dom (-5.0 +/- 0.9 Torr), hypoxia (-4.1 +/- 0.5 Torr), and Dom/hypoxia (-11.1 +/- 1.2 Torr). The PaCO2 decrease from rest to exercise was not significantly different between control (-1.7 +/- 0.6 Torr) and Dom (-1.4 +/- 0.8 Torr) but was significantly greater in hypoxia (-4.3 +/- 0.7 Torr) and Dom/hypoxia (-3.5 +/- 0.9 Torr). The slope of the ventilation vs. CO2 production relationship in exercise increased with Dom (16%), hypoxia (18%), and Dom/hypoxia (68%). Ventilatory responses to inspired CO2 at rest increased from control to Dom (236%) and Dom/hypoxia (295%) and increased in four of five goats in hypoxia (mean 317%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Goats were prepared so that one carotid body (CB) could be perfused with blood in which the gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Since one CB is functionally adequate, the nonperfused CB was excised. To determine whether systemic arterial hypoxemia is necessary for ventilatory acclimatization to hypoxia (VAH), the CB was perfused with hypoxic normocapnic blood for 6 h [means +/- SE: partial pressure of carotid body O2 (PcbO2), 40.6 +/- 0.3 Torr; partial pressure of carotid body CO2 (PcbCO2), 38.8 +/- 0.2 Torr] while the awake goat breathed room air to maintain systemic arterial normoxia. In control periods before and after CB hypoxia the CB was perfused with hyperoxic normocapnic blood. Changes in arterial PCO2 (PaCO2) were used as an index of changes in ventilation. Acute hypoxia (0.5 h of hypoxic perfusion) resulted in hyperventilation sufficient to reduce average PaCO2 by 6.7 Torr from control (P less than 0.05). Over the subsequent 5.5 h of hypoxic perfusion, average PaCO2 decreased further, reaching 4.8 Torr below that observed acutely (P less than 0.05). Acute CB hyperoxic perfusion (20 min) following 6 h of hypoxia resulted in only partial restoration of PaCO2 toward control values; PaCO2 remained 7.9 Torr below control (P less than 0.05). The progressive hyperventilation that occurred during and after 6 h of CB hypoxia with concomitant systemic normoxia is similar to that occurring with total body hypoxia. We conclude that systemic (and probably brain) hypoxia is not a necessary requisite for VAH.  相似文献   

15.
Arterial blood Po/, Pco2, lactate levels and Cl- ion concentration as well as pH were measured on the time course in chickens (Gallus domesticus) as they settled in normoxic conditions and during exposure to acute hypobaric hypoxia (Pb = 450 Torr). Hypoxia provoked at first a CO2 increased output from blood and a brief stage of deep metabolic acidosis during which lactate levels suddenly increased. This acidosis was then compensated producing a return to the initial pH and a decrease in [HCO3-] + [CO3(2-)] after 60 min. Subsequently respiratory alkalosis associated with an increase in [HCO-3] + [CO3(2-)], a decrease in cl- ion concentration and a small decrease in lactate levels were observed. Prolonged exposure to hypoxia (16 h) resulted in a new return to the initial pH, a decrease in concentration of [HCO3-] + [CO3(2-)] and a high lactate level. The hematocrit value, the Hb concentration, and the plasma Na+, K+, Ca++ and Mg++ ion concentration did not change significantly.  相似文献   

16.
The exercising Thoroughbred horse (TB) is capable of exceptional cardiopulmonary performance. However, because the ventilatory equivalent for O2 (VE/VO2) does not increase above the gas exchange threshold (Tge), hypercapnia and hypoxemia accompany intense exercise in the TB compared with humans, in whom VE/VO2 increases during supra-Tge work, which both removes the CO2 produced by the HCO buffering of lactic acid and prevents arterial partial pressure of CO2 (PaCO2) from rising. We used breath-by-breath techniques to analyze the relationship between CO2 output (VCO2) and VO2 [V-slope lactate threshold (LT) estimation] during an incremental test to fatigue (7 to approximately 15 m/s; 1 m x s(-1) x min(-1)) in six TB. Peak blood lactate increased to 29.2 +/- 1.9 mM/l. However, as neither VE/VO2 nor VE/VCO2 increased, PaCO2 increased to 56.6 +/- 2.3 Torr at peak VO2 (VO2 max). Despite the presence of a relative hypoventilation (i.e., no increase in VE/VO2 or VE/VCO2), a distinct Tge was evidenced at 62.6 +/- 2.7% VO2 max. Tge occurred at a significantly higher (P < 0.05) percentage of VO2 max than the lactate (45.1 +/- 5.0%) or pH (47.4 +/- 6.6%) but not the bicarbonate (65.3 +/- 6.6%) threshold. In addition, PaCO2 was elevated significantly only at a workload > Tge. Thus, in marked contrast to healthy humans, pronounced V-slope (increase VCO2/VO2) behavior occurs in TB concomitant with elevated PaCO2 and without evidence of a ventilatory threshold.  相似文献   

17.
Constant-flow ventilation (CFV) maintains alveolar ventilation without tidal excursion in dogs with normal lungs, but this ventilatory mode requires high CFV and bronchoscopic guidance for effective subcarinal placement of two inflow catheters. We designed a circuit that combines CFV with continuous positive-pressure ventilation (CPPV; CFV-CPPV), which negates the need for bronchoscopic positioning of CFV cannula, and tested this system in seven dogs having oleic acid-induced pulmonary edema. Addition of positive end-expiratory pressure (PEEP, 10 cmH2O) reduced venous admixture from 44 +/- 17 to 10.4 +/- 5.4% and kept arterial CO2 tension (PaCO2) normal. With the innovative CFV-CPPV circuit at the same PEEP and respiratory rate (RR), we were able to reduce tidal volume (VT) from 437 +/- 28 to 184 +/- 18 ml (P less than 0.001) and elastic end-inspiratory pressures (PEI) from 25.6 +/- 4.6 to 17.7 +/- 2.8 cmH2O (P less than 0.001) without adverse effects on cardiac output or pulmonary exchange of O2 or CO2; indeed, PaCO2 remained at 35 +/- 4 Torr even though CFV was delivered above the carina and at lower (1.6 l.kg-1.min-1) flows than usually required to maintain eucapnia during CFV alone. At the same PEEP and RR, reduction of VT in the CPPV mode without CFV resulted in CO2 retention (PaCO2 59 +/- 8 Torr). We conclude that CFV-CPPV allows CFV to effectively mix alveolar and dead spaces by a small bulk flow bypassing the zone of increased resistance to gas mixing, thereby allowing reduction of the CFV rate, VT, and PEI for adequate gas exchange.  相似文献   

18.
The H2 clearance technique was used to determine the blood flow of the postulated respiratory chemosensitive areas near the ventrolateral surface of the medulla. In 12 pentobarbital sodium-anesthetized cats, flow (mean +/- SD) was measured from 25-micron Teflon-coated platinum wire electrodes implanted to a depth of 0.3-0.7 mm. Flow (in ml X min-1 X 100 g-1, n = 35) was 52.8 +/- 28.5 in hypocapnia [arterial CO2 partial pressure (PaCO2) = 21.8 +/- 1.6 Torr], 57.8 +/- 27.5 in normocapnia (PaCO2 = 31.9 +/- 2.2 Torr), and 75.0 +/- 31.7 in hypercapnia (PaCO2 = 44.5 +/- 3.0 Torr). Flow determined from 15 electrodes in adjacent pyramidal tracts (white matter) was less at all levels of CO2; 22.9 +/- 12.3 in hypocapnia, 29.1 +/- 15.9 in normocapnia, and 33.9 +/- 13.9 in hypercapnia. In hypoxia [arterial O2 partial pressure (PaO2) = 39.9 +/- 6.3 Torr] ventrolateral surface flow rose to 87.9 +/- 47.6, and adjacent white matter flow was 35.8 +/- 15.6. These results indicate that flow in the postulated central chemoreceptor areas exceeds that of white matter and is sensitive to variations in PaCO2 and PaO2.  相似文献   

19.
Neuropeptide Y (NPY) is a vasoconstrictor present in the sympatho-adrenomedullary system and may be co-released with norepinephrine (NE) and epinephrine (EPI) during sympathetic activation. We studied plasma NPY-immunoreactivity (-ir, radioimmunoassay) and catecholamine (radioenzymatic) responses during two acute stress paradigms that differ in character, intensity, and duration. The intermittent stress of footshock (0.75 and 1.5 mA, 0.5 sec duration, at 5-sec intervals, for 5 min) evoked intensity-dependent immediate increments in plasma NE and EPI, and a delayed NPY-ir response (+0.6 +/- 0.1 pmol/ml). Prolonged (60 min) immobilization caused greater increases in plasma NE and EPI levels and no changes in plasma NPY-ir until the end of the stress session (+0.3 +/- 0.1 pmol/ml). Plasma NPY-ir responses correlated with those of NE but not with EPI suggesting a sympathetic origin for the release of the peptide. Relatively greater NPY-ir responses to footshock than to immobilization may be consistent with a preferential release of the peptide by a bursting but not continuous mode of sympathetic activation. However, it may also be due to a differential activation of the sympathetic nerves and adrenal medulla by these two stress situations.  相似文献   

20.
The buffering capacity (beta) of rainbow trout (Oncorhynchus mykiss) plasma was manipulated prior to intravascular injection of bovine carbonic anhydrase to test the idea that proton (H+) availability limits the catalysed dehydration of HCO3- within the extracellular compartment. An extracorporeal blood shunt was employed to continuously monitor blood gases in vivo in fish exhibiting normal plasma beta (-3.9+/-0.3 mmol 1(-1) pH unit(-1)), and in fish with experimentally (using N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]) elevated plasma beta (-12.1+/-1.1 mmol 1(-1) pH unit(-1)). An injection of 5 mg kg(-1) carbonic anhydrase equally reduced (after 90 min) the arterial partial pressure of CO2 in trout with regular (-0.23+/-0.05 Torr) or high (-0.20+/-0.05 Torr) plasma beta; saline injection was without effect. Because ventilation and venous blood gases were unaffected by carbonic anhydrase, the effect of extracellular carbonic anhydrase in lowering arterial partial pressure of CO2 was likely caused solely by a specific enhancement of CO2 excretion owing to acceleration of HCO3- dehydration within the plasma. The lowering of arterial partial pressure of CO2 in trout after injection of exogenous carbonic anhydrase provides the first in vivo evidence that the accessibility of plasma HCO3- to red blood cell carbonic anhydrase constrains CO2 excretion under resting conditions. Because the velocity of red blood cell Cl-/HCO3- exchange governs HCO3- accessibility to red blood cell carbonic anhydrase, the present study also provides evidence that CO2 excretion at rest is limited by the relatively slow rate of Cl-/HCO3- exchange. The effect of carbonic anhydrase in lowering arterial partial pressure of CO2 was unrelated to plasma buffering capacity. While these data could suggest that H+ availability does not limit extracellular HCO3- dehydration in vivo at resting rates of CO2 excretion, it is more likely that the degree to which plasma beta was elevated in the present study was insufficient to drive a substantially increased component of HCO3- dehydration through the plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号