首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limitations associated with immunofluorescence enumeration of bacteria in soil derive largely from the efficiency with which cells can be separated from soil particles and collected on membrane filters for staining. Many tropical soils fix added bacteria tightly, resulting in low recoveries. Eight soils, representative of three of the major soil orders found in the tropics (oxisols, vertisols, and inceptisols), were tested for recovery of added Rhizobium strains. All except one Hawaiian andept (Typic Eutrandept) yielded recoveries ranging from <1 to 13%. Recovery from the andept was 100%. In soil-sand mixtures, addition of only a small amount of soil caused a dramatic decrease in recovery of added rhizobia. Increasing the soil content of the mixture from 0% (10 g of sand) to 50% (5 g of soil-5 g of sand) reduced recoveries from >90 to <1%. Varying the ionic strength and pH of the extracting solution did not cause marked increases in recovery. Protein solutions, ethylenediaminetetraacetate, and NaHCO3, on the other hand, improved release of bacteria. We report a modification to the usual membrane filter immunofluorescence procedure which yielded consistently high and reproducible recovery (coefficient of variation, 30%) of rhizobia from several tropical soils. In the modified procedure, partially hydrolyzed gelatin, diluted in ammonium phosphate, was used to suspend the soil. This caused dispersion of the soil and release of the bacteria from soil flocs. The efficiency of recovery of Rhizobium spp. from several tropical and two temperate soils remained high as the content of these soils in soil-sand mixtures was increased from 0 to 100%. The modified membrane filter immunofluorescence procedure was used to follow the growth of a strain of chickpea (Cicer arietinum) Rhizobium in a sterilized oxisol. The results showed a close agreement with viable counts at different stages during the growth cycle. Diluent for the hydrolyzed gelatin also had a marked effect on recovery. The efficiency of release of Rhizobium spp. from an oxisol was in the following order for the diluents used: 0.1 M (NH4)2HPO4 > 0.1 M Na2HPO4 = 0.1 M sodium-phosphate-buffered saline (pH 7.2) > 0.2 M NH4Cl > 0.2 KCl > NaCl = LiCl > water.  相似文献   

2.
Thirty-one cultures of Rhizobium leguminosarum were screened for effectiveness (C2H2 reduction) on lentils (Lens esculenta). Fluorescent antibodies prepared against three of the most effective strains (Hawaii 5-0, Nitragin 92A3, and Nitragin 128A12) exhibited a high degree of strain specificity; the antibodies reacted strongly with their homologous rhizobia in culture and with bacteroids in nodules. They did not cross-react with one another, and only weakly with 5 of the 47 other R. leguminosarum cultures tested. In competition studies in the growth chamber, whenever strain Nitragin 92A3 was included in the inoculum mixture, it consistently (but not always significantly, P = 0.05) occupied the majority of nodules on all four cultivars used. However, some degree of strain X cultivar interaction was apparent: Hawaii 5-0 was of equal competitiveness (P = 0.05) with Nitragin 92A3 on three of the varieties (Commercial, Tekoa, and Benewah), but inferior (P = 0.01) on the Chilean variety; Nitragin 92A3 completely dominated (P = 0.01) Nitragin 128A12 on all cultivars; and Hawaii 5-0 was of equal competitiveness (P = 0.05) to Nitragin 128A12 on the Chilean variety and more competitive (P = 0.01) on the commercial variety and less so on the other two varieties. In field experiments, Hawaii 5-0 proved of equal competitiveness (P = 0.01) with Nitragin 92A3 in one soil (an Inceptisol) and superior (P ≤ 0.05) to it in another (an Oxisol). Incidence of double-strain occupancy of nodules varied from 0 to 36% in vermiculite, depending on the strains in the mixture and the host variety, and from 0 to 38% in the field, depending on the strains in the mixture and the soil type. The results suggest a close relationship between the competitiveness of a strain and its occurrence in doubly infected nodules.  相似文献   

3.
利用位于染色体不同位点的多个基因序列进行分析是原核生物分类与系统发育研究的一个热点.本文采用atpD和glnⅡ两个持家基因的部分序列对9株分离自我国合欢、金合欢和银合欢的根瘤菌进行系统发育研究,并与以16S rDNA基因序列构建的系统发育树进行比较.结果表明三者在属水平上基本一致,CCBAU43060、CCBAU61139位于Rhizobium-Agrobacterium系统发育分支内;CCBAU51471、CCBAU35220、CCBAU51276和CCBAU61158属于Mesorhizobium,CCBAU35234、CCBAU61178和CCBAU35085位于Bradyrhizobium系统发育分支;在属内种间个别菌株(CCBAU61158、CCBAU43060、CCBAU61178)的系统发育地位存在差异,表明属内种间存在较广泛的基因交流.因此利用16S rDNA确定属水平的分类地位比较可靠,但利用系统发育的方法研究属内种间亲缘关系应采用多个功能保守的持家基因同时进行分析才能得出比较可靠的结论.  相似文献   

4.
The aim of this study was to evaluate the effect of five methods of Rhizobium inoculum application on nodulation and nitrogen fixation in Leucaena leucocephala seedlings cultivated for 6 months in the greenhouse. Plants inoculated with alginate beads were significantly more developed and more nodulated than plants inoculated with the other methodologies used.  相似文献   

5.
In 56-day-old plants, Leucaena leucocephala and its hybrid with L. diversifolia showed 100% more total N than did L. diversifolia. Significant (P < 0.01) host-inoculation interaction in total N was 14.4% of the total phenotypic variation. The most effective and competitive Rhizobium sp. for the leucaenas was TAL 1145. Three-strain mixed inoculation was inferior to TAL 1145 alone.  相似文献   

6.
7.
Rhizobium loti strain PN4115 (NZP2213 str-1) ineffectively nodulates Leucaena leucocephala, i.e., strain PN4115 induces nodulation (Nod+) and is able to invade these nodules (Inv+), but fails to fix nitrogen (Fix). Strain PN4115 does not synthesize a flavolan-binding polysaccharide (FBP), which is synthesized by the fully effective (Nod+Inv+Fix+) R. loti strain PN184 (NZP2037 str-1). The FBP may offer protection from prodelphinidin-rich flavolans synthesized by Lc. leucocephala. In this work, we show that exopolysaccharide (EPS)-negative mutants derived from strain PN4115 have a more severe ineffective phenotype (Nod+InvFix) on Lc. leucocephala than strain PN4115. This suggests that EPS from strain PN4115 is functional during invasion of Lc. leucocephala and that the requirement for EPS precedes the requirement for FBP. Received: 8 October 1996 / Accepted: 11 December 1996  相似文献   

8.
Rhizosphere response was studied as a factor in competition among indigenous Rhizobium japonicum serogroups for the nodulation of soybeans under field conditions. R. japonicum serogroups 110, 123, and 138 were found to coexist in a Waukegan field soil where they were determined to be the major nodulating rhizobia in soybean nodules. Competitive relationships among the three serogroups in that soil and in rhizospheres were examined during two growing seasons with several host cultivars with and without inoculation and with a nonlegume. Enumeration of each of the three competitors was carried out on inner rhizosphere and nonrhizosphere soil by immunofluorescence with serogroup-specific fluorescent antibodies. Rhizobia present in early- and late-season nodules were identified by fluorescent antibody analysis. Populations of each serogroup increased gradually in host rhizospheres, not exceeding 106/g of rhizosphere soil during the first few weeks after planting, whereas numbers in fallow soil remained at initial levels (104 to 105/g). The rhizosphere effects were minor in host plants during this period of nodule initiation and were about the same for all three serogroups. Although serogroup 123 gave no evidence of dominance in early host rhizospheres, it clearly dominated in nodule composition, occupying 60 to 100% of the nodules. High densities of all three serogroups were observed in host rhizospheres during flowering. Rhizosphere populations, especially of serogroup 123, were still high during pod fill and seed maturation. The rhizosphere responses of the R. japonicum serogroups were much greater with the soybean cultivars than with oats, but even in host rhizospheres the R. japonicum populations were greatly outnumbered by other bacteria. The success of serogroup 123 in achieving nodulation does not appear to be due to superior colonization of the host rhizosphere.  相似文献   

9.
The effects of preexposure of soybean (Glycine max L. Merrill) roots to Rhizobium japonicum strains and subsequent establishment of other strains in the nodules were investigated by using combinations of effective strains (USDA 110 and USDA 138) and effective-ineffective strains (USDA 110 and SM-5). Strain USDA 110 was a better competitor than either USDA 138 or SM-5 on cultivars Lee and Peking. However, when either of the two less-competitive strains was inoculated into 2-day-old seedlings before USDA 110 was, their nodule occupancy increased significantly on both cultivars. With USDA 138 as the primary inoculum and USDA 110 delayed for 6, 48, and 168 h, the incidence of USDA 138 nodules increased on cultivar Peking from 6% (at zero time) to 28, 70, and 82% and on cultivar Lee from 17% (at zero time) to 32, 88, and 95% for the three time delays, respectively. Preexposure of 2-week-old roots of cultivar Lee to USDA 138 had essentially the same effect: the incidence of USDA 138 nodules increased from 23% at zero time to 89 and 97% when USDA 110 was delayed for 24 and 72 h, respectively. When the ineffective strain SM-5 was used as the primary inoculum, followed by USDA 110 72 h later, the percentage of nodules containing SM-5 increased from 7 to 76%. These results indicate that the early events in the nodulation process of soybeans are perhaps the most critical for competition among R. japonicum strains.  相似文献   

10.
This is the first systematic study of rhizobia associated with Albizia trees. The analyses of PCR-RFLP and sequencing of 16S rRNA genes, SDS-PAGE of whole-cell proteins and clustering of phenotypic characters grouped the 31 rhizobial strains isolated from Albizia into eight putative species within the genera Bradyrhizobium, Mesorhizobium and Rhizobium. Among these eight rhizobial species, five were unique to Albizia and the remaining three were shared with Acacia and Leucaena, two legume trees coexisting with Albizia in China. These results indicated that Albizia species nodulate with a wide range of rhizobial species and had preference of microsymbionts different from Acacia and Leucaena. The definition of four novel groups, Mesorhizobium sp., Rhizobium sp. I, Rhizobium sp. II and "R. giardinii", indicates that further studies with enlarged rhizobial population are necessary to better understand the diversity and to clarify the taxonomic relationships of Albizia-associated rhizobia.  相似文献   

11.
In 56-day-old plants, Leucaena leucocephala and its hybrid with L. diversifolia showed 100% more total N than did L. diversifolia. Significant (P < 0.01) host-inoculation interaction in total N was 14.4% of the total phenotypic variation. The most effective and competitive Rhizobium sp. for the leucaenas was TAL 1145. Three-strain mixed inoculation was inferior to TAL 1145 alone.  相似文献   

12.
Soybean is extensively cultivated worldwide and is the largest source of biologically fixed nitrogen among legumes. It is nodulated by both slow and fast growing rhizobia. Indigenous soybean rhizobia in Vertisols of central India were assessed for utilization of 35 carbon sources and intrinsic resistance to 19 antibiotics. There was greater utilization of trehalose and raffinose by fast growers (87 and 73 % by fast vs. 35 and 30 % by slow growers); but slow growers had higher ability to utilize glucosamine (75 % by slow vs. 33 % by fast growers). A larger proportion of slow growers were resistant to vancomycin, polymyxin-B and rifampicin (70, 65 and 55 %) compared to fast growers (13, 7 and 7 % each). Among the two 16S rRNA sequence types in the slow growers, those belonging to Bradyrhizobium spp. utilized glucosamine while those belonging to Rhizobium radiobacter did not. All the fast growers had 16S rRNA homology to R. radiobacter and majority could not utilize glucosamine. It is suggested that during initial isolations and screening of rhizobia in strain selection programmes, using carbon sources like glucosamine and antibiotics like vancomycin, polymyxin-B and rifampicin in the media may provide a simple way of distinguishing Bradyrhizobium strains from R. radiobacter among the slow growers.  相似文献   

13.
D.M. SWELIM, L.D. KUYKENDALL, F.M. HASHEM, S.M. ABDEL-WAHAB AND N.I. HEGAZI. 1996. The competitiveness of wild-type strains of Rhizobium sp. ( Leucaena ) and their genetically marked double mutants was examined in mixed infection experiments in the greenhouse. Antibiotic resistance markers were selected for use in strain identification, but these genetic markers apparently lowered both competitiveness and effectiveness, except in the case of strain DS 144/2 where the genetically marked derivative was evidently superior to the wild-type parent strain in effectiveness. Four wild-type strains and their genetically marked derivatives were carefully evaluated using double reciprocal pairs, the results of which nevertheless allowed the formulation of some conclusions. Strains DS 65 and DS 78 were more competitive than strain DS 144/2; only strain DS 78 was more competitive than DS 158; and strains DS 158 and DS 65 were equally competitive. There was no correlation between nodule number and competitiveness. Shoot dry weight and nitrogen mass, as well as nitrogenase activity, decreased with some strain mixtures indicating that relatively ineffective symbioses had formed, as compared with single-strain inoculations using symbiotically competent strains.  相似文献   

14.
The potential of Leucaena leucocephala as an erosion control plant was investigated in terms of its capacity of root reinforcement, root profile and root shear strength. The species studied exhibited extensive, dense rooting and depth of penetration. These aspects, to some extent, could provide surficial as well as deep-seated erosion control. A high water absorption capacity would increase suction, thus potentially extracting water at the greater depth. The soil–root matrix significantly affects cohesion factor but not the angle of friction. The effect varies with increasing depth and age of plant depending on the root length density. After 6 months of growth, the cohesion factor had tremendously increased by two- to fivefold (0.1–0.5 m soil depth). This range almost reached the values of those in the 12-month treatment, indicating a high contribution of the root system to soil–root reinforcement.  相似文献   

15.
16.
The effect of the fungicide, chlorothalonil, on vesicular-arbuscular mycorrhizal (VAM) symbiosis was studied in a greenhouse using Leucaena leucocephala as test plant. Chlorothalonil was applied to soil at 0, 50, 100 and 200 μg g−1. The initial soil solution P levels were 0.003 μg mL−1 (sub-optimal) and 0.026 μg mL−1 (optimal). After 4 weeks, the sub-optimal P level was raised to 0.6 μg mL−1 (high). The soil was either uninoculated or inoculated with the VAM fungus, Glomus aggregatum. The fungicide reduced mycorrhizal colonization of roots, development of mycorrhizal effectiveness, shoot P concentration and uptake and dry matter yields at all concentrations tested, although the highest inhibitory effect was noted as the concentration of the fungicide was increased from 50 to 100 μg g−1. Phosphorus applied after four weeks tended to partially offset the deleterious effects of chlorothalonil in plants grown in the inoculated and uninoculated soil which suggests that the fungicide was interfering with plant P uptake. The results suggest that the use of chlorothalonil should be restricted to levels below 50 μg g−1 if the benefits of mycorrhizal symbiosis are to be expected. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464.  相似文献   

17.
元谋干热河谷地区新银合欢天然更新的初步调查   总被引:4,自引:0,他引:4  
通过2005年6和10月对元谋干热河谷地区新银合欢人工林的调查,发现新银合欢林下幼苗数量较多,经过对幼苗刨根后,发现林下的新银合欢幼苗均为种子实生苗,表明新银合欢是通过种子繁殖来完成天然更新。新银合欢单株结实量在602~1513粒,树体高大的结实量多;其林下幼苗生长良好,更新密度最低为368株·m-2,最高达960株·m-2;新银合欢林缘幼苗最远扩散距离为58·3m,幼苗的扩散范围主要集中在距离林缘10m的区域内,种子受风力和流水的影响,可以沿沟谷传播很远。  相似文献   

18.
Establishment of Leucaena leucocephala was poor at Ibadan (Transition forest-savanna zone) and Fashola (savanna zone, 70 km north of Ibadan) in southwestern Nigeria as a result of low soil fertility and the presence of only a few native rhizobia capable of nodulating it. Inoculation with L. leucocephala at these two locations in 1982 resulted in striking responses with Rhizobium strains IRc 1045 and IRc 1050 isolated from L. leucocephala grown in Nigeria. The persistence of inoculated effective Rhizobium strains after inoculation is desirable since it removes the need for reinoculation. Because of the perennial nature of L. leucocephala and its use in long-term alley farming experiments, we examined the persistence of inoculated rhizobial strains after inoculation, and their ability to sustain N2-fixation and biomass production at Ibadan. In 1992, ten years after Rhizobium introduction, uninoculated, L. leucocephala fixed about 150 kg N ha-1 yr-1 or about 41% of total plant N compared to 180 kg N ha-1 yr-1 or 43% measured in 1982. Serological typing of the nodules using the Enzyme-Linked-Immunosorbent Assay (ELISA) and intrinsic resistance to the streptomycin test revealed that most of the nodules (96%) formed on L. leucocephala in 1992 were by Rhizobium strains IRc 1045 and IRc 1050, which were inoculated in 1982. Nodules were absent on uninoculated L. leucocephala grown on the adjacent field with no history of L. leucocephala cultivation. We conclude that the N2 fixed by Rhizobium strains IRc 1045 and IRc 1050 persisted for many years in the absence of L. leucocephala and sustained effectively fixed N2 which growth and yield of L. leucocephala after several years, thus encouraging a possible low-input alley farming system by smallholder farmers in Nigeria.  相似文献   

19.
Nodulation-defective rhizobia and their nodule-forming derivatives containing cloned DNA from the wild type were used to study nodulation suppression in Phaseolus vulgaris L. Non-nitrogen-fixing derivatives which formed rhizobia-containing white nodules induced partial suppression. Comparison of this with the complete suppression by Fix+ derivatives and a Fix- mutant which formed rhizobia-containing pink nodules suggests that the extent of suppression may be related to successive stages of nodule development.  相似文献   

20.
Journal of Plant Research - Cysteine biosynthesis is directed by the successive commitments of serine acetyltransferase, and O-acetylserine (thiol) lyase (OASTL) compounds, which subsequently frame...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号