共查询到20条相似文献,搜索用时 15 毫秒
1.
Karl J. Niklas Francisco Molina-Freaner Clara Tinoco-Ojanguren 《American journal of botany》1999,86(6):767-775
We report the longitudinal variations in stiffness and bulk density of tissue samples drawn from along the length of two Pachycereus pringlei plants measuring 3.69 and 5.9 m in height to determine how different tissues contribute to the mechanical stability of these massive vertical organs. Each of the two stems was cut into segments of uniform length and subsequently dissected to obtain and mechanically test portions of xylem strands, stem ribs, and a limited number of pith and cortex samples. In each case, morphometric measurements were taken to determine the geometric contribution each tissue likely made to the ability of whole stems to resist bending forces. The stiffness of each xylem strand increased basipetally toward the base of each plant where stiffness sharply decreased, reaching a magnitude comparable to that of strands 1 m beneath the stem apex. The xylem was anisotropic in behavior, i.e., its stiffness measured in the radial and in the tangential directions differed significantly. Despite the abrupt decrease in xylem strand stiffness at the stem base, the contribution made by this tissue to resist bending forces increased exponentially from the tip to the base of each plant due to the accumulation of wood. A basipetal increase in the stiffness of the pith (and, to limited extent, that of the cortex) was also observed. In contrast, the stiffness of stem rib tissues varied little as a function of stem length. These tissues were stiffer than the xylem in the corresponding portions of the stem along the upper two-fifths of the length of either plant. Tissue stiffness and bulk density were not significantly correlated within or across tissue types. However, a weak inverse relationship was observed for these properties in the case of the xylem and stem rib tissues. We present a simple formula that predicts when stem ribs rather than the xylem strands serve as the principal stiffening agents in stems. This formula successfully predicted the observed aspect ratio of the stem ribs (the average quotient of the radial and tangential dimensions of rib transections), and thus provided circumstantial evidence that the ribs are important for mechanical stability for the distal and younger regions of the stems examined. 相似文献
2.
We investigated the hypothesis that the epidermis is a tension-stressed "skin' whose contribution to stem stiffness depends on the turgor pressure exerted on it by an hydrostatically inflated inner "core' of tissues. This hypothesis was tested by relying on the intensities of bending stresses due to stem flexure, which must reach their maximum levels at the outer surface of epidermis such that damage to the surface of the stem should produce the most significant decrease in overall flexural stiffness. We discerned whether the principal tension supporting members at the stem surface (cellulosic microfibrils) were oriented parallel or normal to stem length by comparing the bending stiffness of stems before and after their surface cells first received three parallel longitudinal incisions followed by one helical incision, and by comparing the bending stiffness of stems for which the sequence of cuts was reversed. The same protocol was also applied to stems with various water potentials to determine the effect of hydrostatic pressure on stem stiffness contributed by the surface. Based on the behavior of 82 turgid Tulipa stems, parallel cuts reduced, on average, stem stiffness by 8%, whereas a subsequent helical incision further reduced stiffness by 42%. In contrast, an initial helical incision reduced stem stiffness by 50%, while three subsequent parallel cuts through the same stems did not significantly further reduce stiffness. These results suggested that the net orientation of cellulose microfibrils in the outer epidermal walls was parallel to stem length. This was confirmed by microscopic observations of cells with dichroic staining and polarized light. The responses to surgical damage were directly proportional to stem water potential. We thus conclude that the epidermis, probably in conjunction with a single layer of subepidermal collenchyma cells, acts as a tension-stiffening agent that can contribute as much as 50% to overall stem stiffness We present a simple mechanical model that can account for all our observations. 相似文献
3.
The mechanical properties of isolated cuticles of leaves (Yucca aloifolia, Clusia fluminensis, Nerium oleander, Hedera helix) and one fruit (Lycopersicon esculentum) were investigated by means of a tensile test. Samples of the leaves and the fruit were cut to identical size (12.5 × 50 mm) and the cuticles were enzymatically isolated, cleaned, and air dried. The morphology of the isolated cuticular membranes (CM) was investigated by scanning electron microscopy (SEM) and showed considerable differences. The thickness of the CM was determined by a digital image analysis system and ranged between 2.4 and 13.4 μm. The CM were subjected to a tensile test and the results are presented as stress-strain diagrams. From the latter, Young's moduli were calculated, a measure for the stiffness which allows the direct comparison of different materials. The obtained values ranged between 0.1 and 1.3 CPa. Hydration of CM caused a decrease of Young's moduli of about 35–50%. A possible role of the cuticle as a factor for the stabilization of plant organs is discussed. 相似文献
4.
Noemi Correa Martina Alunni Cardinali Michelle Bailey Daniele Fioretto Paul D. A. Pudney Francesca Palombo 《Journal of biophotonics》2021,14(6):e202000483
Brillouin microscopy is a new form of optical elastography and an emerging technique in mechanobiology and biomedical physics. It was applied here to map the viscoelastic properties of human hair and to determine the effect of bleaching on hair properties. For hair samples, longitudinal measurements (i.e. along the fibre axis) revealed peaks at 18.7 and 20.7 GHz at the location of the cuticle and cortex, respectively. For hair treated with a bleaching agent, the frequency shifts for the cuticle and cortex were 19.7 and 21.0 GHz, respectively, suggesting that bleaching increases the cuticle modulus and—to a minor extent—the cortex modulus. These results demonstrate the capability of Brillouin spectroscopy to address questions on micromechanical properties of hair and to validate the effect of applied treatments. 相似文献
5.
Laura A. Darnell Mark F. Teaford Kenneth J.T. Livi Timothy P. Weihs 《American journal of physical anthropology》2010,141(1):7-15
Teeth have provided insights into many topics including primate diet, paleobiology, and evolution, due to the fact that they are largely composed of inorganic materials and may remain intact long after an animal is deceased. Previous studies have reported that the mechanical properties, chemistry, and microstructure of human enamel vary with location. This study uses nanoindentation to map out the mechanical properties of Alouatta palliata molar enamel on an axial cross‐section of an unworn permanent third molar, a worn permanent first molar, and a worn deciduous first molar. Variations were then correlated with changes in microstructure and chemistry using scanning electron microscopy and electron microprobe techniques. The hardness and Young's modulus varied with location throughout the cross‐sections from the occlusal surface to the dentin‐enamel junction (DEJ), from the buccal to lingual sides, and also from one tooth to another. These changes in mechanical properties correlated with changes in the organic content of the tooth, which was shown to increase from ~6% near the occlusal surface to ~20% just before the DEJ. Compared to human enamel, the Alouatta enamel showed similar microstructures, chemical constituents, and magnitudes of mechanical properties, but showed less variation in hardness and Young's modulus, despite the very different diet of this species. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc. 相似文献
6.
Kirstin Suck Stefanie Roeker Solvig Diederichs Fabienne Anton Jose A. Sanz‐Herrera Ignacio Ochoa Manuel Doblare Thomas Scheper Martijn van Griensven Cornelia Kasper 《Biotechnology progress》2010,26(3):671-678
The development of bone tissue engineering depends on the availability of suitable biomaterials, a well‐defined and controlled bioreactor system, and on the use of adequate cells. The biomaterial must fulfill chemical, biological, and mechanical requirements. Besides biocompatibility, the structural and flow characteristics of the biomaterial are of utmost importance for a successful dynamic cultivation of osteoblasts, since fluid percolation within the microstructure must be assured to supply to cells nutrients and waste removal. Therefore, the biomaterial must consist of a three‐dimensional structure, exhibit high porosity and present an interconnected porous network. Sponceram®, a ZrO2 based porous ceramic, is characterized in the presented work with regard to its microstructural design. Intrinsic permeability is obtained through a standard Darcy's experiment, while Young's modulus is derived from a two plates stress–strain test in the linear range. Furthermore, the material is applied for the dynamic cultivation of primary osteoblasts in a newly developed rotating bed bioreactor. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
7.
The hollow stem of Equisetum giganteum owes its mechanical stability to an outer ring of strengthening tissue, which provides stiffness and strength in the longitudinal direction, but also to an inner lining of turgid parenchyma, which lends resistance to local buckling. With a height >2.5 m isolated stems are mechanically unstable. However, in dense stands individual stems support each other by interlacing with their side branches, the typical growth habit of semi-self-supporters. 相似文献
8.
Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag. 相似文献
9.
Flow velocity has an influence on the hydrodynamic and biomechanical properties, as well as on the morphology and the anatomy of the submerged water moss Fontinalis antipyretica Hedw. Cross-sections of the plant stems show two main types of tissues. The strengthening tissue in the outer part is characterized by thick-walled cells with a small lumen, the parenchyma in the centre by thin-walled cells with a large lumen. The specimens from habitats of different flow velocities differ in the proportions of the strengthening tissue and the branching angle of the leaves. A flow tank with a special sensitive two-component balance inserted into the bottom of the flume was used to measure the hydrodynamic drag, which acts on the plant stems at different flow velocities. The drag forces increase with the length of the plant. Mechanical properties such as elasticity and ultimate strength of the plant stems were tested in tension. Relating the data to the relative proportions of the strengthening tissue results in different estimates of Young's moduli for the strengthening tissue of plants from the different sites. The critical strains to which the stems can be extended are remarkably high. Loading and unloading cycles reveal viscoelastic behaviour of the stem tissues. In the first cycle plastic deformation is also observed, but only to a lesser degree in subsequent cycles. 相似文献
10.
Yujie Sun Senli Guo Gilbert C Walker Christopher J Kavanagh Geoffrey W Swain 《Biofouling》2013,29(6):279-289
The properties of barnacle adhesive on silicone surfaces were studied by AFM indentation, imaging, and other tests and compared to the barnacle shear adhesion strength. A multilayered structure of barnacle adhesive plaque is proposed based on layered modulus regions measured by AFM indentation. The fracture of barnacles from PDMS surfaces was found to include both interfacial and cohesive failure of barnacle adhesive plaque, as determined by protein staining of the substratum after forced barnacle release from the substrate. Data for freshly released barnacles showed that there was a strong correlation between the mean Young's modulus of the outermost (softest) adhesive layer (E< 0.3 MPa) and the shear strength of adhesion, but no correlation for other higher modulus regions. Linear, quadratic, and Griffith's failure criterion (based on rough estimate of crack length) regressions were used in the fit, and showed significance. 相似文献
11.
Poisson's ratio has not been experimentally measured earlier for meniscus in compression. It is however an important intrinsic material property needed in biomechanical analysis and computational models. In this study, equilibrium Poisson's ratio of bovine meniscus (n = 6) was determined experimentally by combining stress-relaxation measurements in unconfined and confined compression geometries. The average Young's modulus, aggregate modulus and Poisson's ratio were 0.182 ± 0.086 MPa, 0.252 ± 0.089 MPa and 0.316 ± 0.040, respectively. These moduli are consistent with previously determined values, but the Poisson’s ratio is higher than determined earlier for meniscus in compression through biomechanical modelling analysis. This new experimentally determined Poisson’s ratio value could be used in the analysis of biomechanical data as well as in computational finite element analysis when the Poisson’s ratio is needed as an input for the analysis. 相似文献
12.
Human skin allografts are used worldwide as an adjunct for the healing of burns when autograft skin is not available or not indicated. Allograft skin comes from human cadaveric donors, and so must be preserved until use. This study forms the first investigation to compare the mechanical and histological integrity of human split-thickness skin grafts preserved by either glycerolisation or cryopreservation (with or without the cryoprotectant DMSO). Stress relaxation was used to assess mechanical properties, whilst histological analysis allowed for evaluation of structural integrity. 相似文献
13.
Abnormal mechanical loading may trigger cartilage degeneration associated with osteoarthritis. Tissue response to load has been the subject of several in vitro studies. However, simple stimuli were often applied, not fully mimicking the complex in vivo conditions. Therefore, a rolling/plowing explant test system (RPETS) was developed to replicate the combined in vivo loading patterns. In this work we investigated the mechanical behavior of bovine nasal septum (BNS) cartilage, selected as tissue approximation for experiments with RPETS, under static and dynamic loading. Biphasic material properties were determined and compared with those of other cartilaginous tissues. Furthermore, dynamic loading in plowing modality was performed to determine dynamic response and experimental results were compared with analytical models and Finite Elements (FE) computations. Results showed that BNS cartilage can be modeled as a biphasic material with Young's modulus E=2.03±0.7 MPa, aggregate modulus HA=2.35±0.7 MPa, Poisson's ratio ν=0.24±0.07, and constant hydraulic permeability k0=3.0±1.3×10−15 m4 (N s)−1. Furthermore, dynamic analysis showed that plowing induces macroscopic reactions in the tissue, proportionally to the applied loading force. The comparison among analytical, FE analysis and experimental results showed that predicted tangential forces and sample deformation lay in the range of variation of experimental results for one specific experimental condition. In conclusion, mechanical properties of BNS cartilage under both static and dynamic compression were assessed, showing that this tissue behave as a biphasic material and has a viscoelastic response to dynamic forces. 相似文献
14.
15.
Yu.M. Efremov M.E. Lomakina D.V. Bagrov P.I. Makhnovskiy A.Y. Alexandrova M.P. Kirpichnikov K.V. Shaitan 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Recently, it was revealed that tumor cells are significantly softer than normal cells. Although this phenomenon is well known, it is connected with many questions which are still unanswered. Among these questions are the molecular mechanisms which cause the change in stiffness and the correlation between cell mechanical properties and their metastatic potential. We studied mechanical properties of cells with different levels of cancer transformation. Transformed cells in three systems with different transformation types (monooncogenic N-RAS, viral and cells of tumor origin) were characterized according to their morphology, actin cytoskeleton and focal adhesion organization. Transformation led to reduction of cell spreading and thus decreasing the cell area, disorganization of actin cytoskeleton, lack of actin stress fibers and decline in the number and size of focal adhesions. These alterations manifested in a varying degree depending on type of transformation. Force spectroscopy by atomic force microscopy with spherical probes was carried out to measure the Young's modulus of cells. In all cases the Young's moduli were fitted well by log-normal distribution. All the transformed cell lines were found to be 40–80% softer than the corresponding normal ones. For the cell system with a low level of transformation the difference in stiffness was less pronounced than for the two other systems. This suggests that cell mechanical properties change upon transformation, and acquisition of invasive capabilities is accompanied by significant softening. 相似文献
16.
Xiao Han;Yubao Zhang;Gang Shi;Guo Liu;Sizhu Ai;Yidi Wang;Qin Zhang;Xingdao He; 《Journal of biophotonics》2024,17(4):e202300441
Quantifying corneal elasticity after femtosecond laser-assisted in situ keratomileusis (FS-LASIK) procedure plays an important role in improving surgical safety and quality, since some latent complications may occur ascribing to changes in postoperative corneal biomechanics. Nevertheless, it is suggested that current research has been severely constrained due to the lack of an accurate quantification method to obtain postoperative corneal elasticity distribution. In this paper, an acoustic radiation force optical coherence elastography system combined with the improved phase velocity algorithm was utilized to realize elasticity distribution images of the in vivo rabbit cornea after FS-LASIK under various intraocular pressure levels. As a result, elasticity variations within and between the regions of interest could be identified precisely. This is the first time that elasticity imaging of in vivo cornea after FS-LASIK surgery was demonstrated, and the results suggested that this technology may hold promise in further exploring corneal biomechanical properties after refractive surgery. 相似文献
17.
Adam Hartstone‐Rose Jennifer A. Parkinson Taylor Criste Jonathan M.G. Perry 《American journal of physical anthropology》2015,157(3):513-518
Previously we found that Maximum Ingested Bite Size (Vb)—the largest piece of food that an animal will ingest whole without biting first—scales isometrically with body size in 17 species of strepsirrhines at the Duke Lemur Center (DLC). However, because this earlier study focused on only three food types (two with similar mechanical properties), it did not yield results that were easily applied to describing the broad diets of these taxa. Expressing Vb in terms of food mechanical properties allows us to compare data across food types, including foods of wild lemurs, to better understand dietary adaptations in lemurs. To this end, we quantified Vb in five species of lemurs at the DLC representing large and small frugivores and folivores using ten types of food that vary widely in stiffness and toughness to determine how these properties relate to bite sizes. We found that although most species take smaller bites of stiffer foods, this negative relationship was not statistically significant across the whole sample. However, there is a significant relationship between bite size and toughness. All three of the more frugivorous taxa in our sample take significantly smaller bites of tougher foods. However, the two more folivorous lemurs do not. They take small bites for all foods. This suggests that the species most adapted to the consumption of tough foods do not modulate their ingestive sizes to accommodate larger pieces of weak foods. Am J Phys Anthropol 157:513–518, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
18.
Normal modes of vibration in bovine pancreatic trypsin inhibitor and its mechanical property 总被引:2,自引:0,他引:2
The normal mode analysis of conformational fluctuation is carried out for a small globular protein, bovine pancreatic trypsin inhibitor. Results are analyzed mainly to reveal the mechanical construction of the protein molecule. We take dihedral angles, including peptide omega angles, as independent variables for the normal mode analysis. There are 306 such angles in this molecule. Motions in modes with frequencies lower than 120 cm-1 are shown to involve atoms in the whole protein molecule, and spatial change of displacement vectors is continuous, i.e., those of atoms near in space are similar. To quantitate the observation of the continuity, a correlation function of direction vectors of atomic displacements is calculated. From this function we define a quantity that is interpreted as the wave length of an equivalent elastic plane wave. From this quantity we deduce effective Young's modulus for each mode. For the mode with the lowest frequency 4.4 cm-1, it turned out to be 0.8 x 10(9) dyn cm-2, the value two orders of magnitude softer than, for instance, alpha-helices. Prompted by this observation, the four lowest frequency modes and also the harmonic motions in the thermal equilibrium are analyzed further mainly to detect relatively rigid structural elements in the molecule. From this analysis emerges a mechanical picture of the protein molecule that is made up of relatively rigid elements held together by very soft parts. 相似文献
19.
During the immune response, neutrophils display localized mechanical events by interacting with their environment through the micro-vascular transit, trans-endothelial, and trans-epithelial migration. Nano-mechanical studies of human neutrophils on localized nano-domains could provide the essential information for understanding their immune responsive functions. Using the Atomic Force Microscopy (AFM)-based micro-rheology, we have investigated rheological properties of the adherent human neutrophils on local nano-domains. We have applied the modified Hertz model to obtain the viscoelastic moduli from the relatively thick body regions of the neutrophils. In addition, by using more advanced models to account for the substrate effects, we have successfully characterized the rheological properties of the thin leading and tail regions as well. We found a regional difference in the mechanical compliances of the adherent neutrophils. The central regions of neutrophils were significantly stiffer (1,548 ± 871 Pa) than the regions closer to the leading edge (686 ± 801 Pa), while the leading edge and the tail (494 ± 537 Pa) regions were mechanically indistinguishable. The frequency-dependent elastic and viscous moduli also display a similar regional difference. Over the studied frequency range (100 to 300 Hz), the complex viscoelastic moduli display the partial rubber plateau behavior where the elastic moduli are greater than the viscous moduli for a given frequency. The non-disparaging viscous modulus indicates that the neutrophils display a viscoelastic dynamic behavior rather than a perfect elastic behavior like polymer gels. In addition, we found no regional difference in the structural damping coefficient between the leading edge and the cell body. Thus, we conclude that despite the lower loss and storage moduli, the leading edges of the human neutrophils display partially elastic properties similar to the cell body. These results suggest that the lower elastic moduli in the leading edges are more favorable for the elastic fluctuation of actin filaments, which supports the polymerization of the actin filaments leading to the active protrusion during the immune response. 相似文献
20.
A. Kempe T. Lautenschläger A. Lange C. Neinhuis 《Plant biology (Stuttgart, Germany)》2014,16(1):264-271
Carica papaya L. does not contain wood, according to the botanical definition of wood as lignified secondary xylem. Despite its parenchymatous secondary xylem, these plants are able to grow up to 10‐m high. This is surprising, as wooden structural elements are the ubiquitous strategy for supporting height growth in plants. Proposed possible alternative principles to explain the compensation for lack of wood in C. papaya are turgor pressure of the parenchyma, lignified phloem fibres in the bark, or a combination of the two. Interestingly, lignified tissue comprises only 5–8% of the entire stem mass. Furthermore, the phloem fibres do not form a compact tube enclosing the xylem, but instead form a mesh tubular structure. To investigate the mechanism of papaya's unusually high mechanical strength, a set of mechanical measurements were undertaken on whole stems and tissue sections of secondary phloem and xylem. The structural Young's modulus of mature stems reached 2.5 GPa. Since this is low compared to woody plants, the flexural rigidity of papaya stem construction may mainly be based on a higher second moment of inertia. Additionally, stem turgor pressure was determined indirectly by immersing specimens in sucrose solutions of different osmolalities, followed by mechanical tests; turgor pressure was between 0.82 and 1.25 MPa, indicating that turgor is essential for flexural rigidity of the entire stem. 相似文献