首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.

Background  

RNA interference (RNAi) is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA) or micro RNA (miRNA) from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA.  相似文献   

4.
DOUBLE-STRANDED RNA BINDING (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets.1 Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNAs.  相似文献   

5.
6.

Background  

In eukaryotes, RNA interference (RNAi) is a major mechanism of defense against viruses and transposable elements as well of regulating translation of endogenous mRNAs. The RNAi systems recognize the target RNA molecules via small guide RNAs that are completely or partially complementary to a region of the target. Key components of the RNAi systems are proteins of the Argonaute-PIWI family some of which function as slicers, the nucleases that cleave the target RNA that is base-paired to a guide RNA. Numerous prokaryotes possess the CRISPR-associated system (CASS) of defense against phages and plasmids that is, in part, mechanistically analogous but not homologous to eukaryotic RNAi systems. Many prokaryotes also encode homologs of Argonaute-PIWI proteins but their functions remain unknown.  相似文献   

7.
The origin of RNA interference (RNAi) is usually explained by a defense-based hypothesis, in which RNAi evolved as a defense against transposable elements (TEs) and RNA viruses and was already present in the last eukaryotic common ancestor (LECA). However, since RNA antisense regulation and double-stranded RNAs (dsRNAs) are ancient and widespread phenomena, the origin of defensive RNAi should have occurred in parallel with its regulative functions to avoid imbalances in gene regulation. Thus, we propose a neutral evolutionary hypothesis for the origin of RNAi in which qualitative system drift from a prokaryotic antisense RNA gene regulation mechanism leads to the formation of RNAi through constructive neutral evolution (CNE). We argue that RNAi was already present in the ancestor of LECA before the need for a new defense system arose and that its presence helped to shape eukaryotic genomic architecture and stability.

Where does RNA interference come from? This Essay describes a new step-by-step evolutionary model of how RNA interference might have originated in early eukaryotes through neutral events from the molecular machinery present in prokaryotes.  相似文献   

8.
The recent discovery of microRNAs (miRNAs) in unicellular eukaryotes, including miRNAs known previously only from animals or plants, implies that miRNAs have a deep evolutionary history among eukaryotes. This contrasts with the prevailing view that miRNAs evolved convergently in animals and plants. We re-evaluate the evidence and find that none of the 73 plant and animal miRNAs described from protists meet the required criteria for miRNA annotation and, by implication, animals and plants did not acquire any of their respective miRNA genes from the crown ancestor of eukaryotes. Furthermore, of the 159 novel miRNAs previously identified among the seven species of unicellular protists examined, only 28 from the algae Ectocarpus and Chlamydomonas, meet the criteria for miRNA annotation. Therefore, at present only five groups of eukaryotes are known to possess miRNAs, indicating that miRNAs have evolved independently within eukaryotes through exaptation of their shared inherited RNAi machinery.  相似文献   

9.
Verdel A  Moazed D 《FEBS letters》2005,579(26):5872-5878
Heterochromatin is an epigenetically heritable and conserved feature of eukaryotic chromosomes with important roles in chromosome segregation, genome stability, and gene regulation. The formation of heterochromatin involves an ordered array of chromatin changes, including histone deacetylation, histone H3-lysine 9 methylation, and recruitment of histone binding proteins such as Swi6/HP1. Recent discoveries have uncovered a role for the RNA interference (RNAi) pathway in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe and other eukaryotes. Purification of two RNAi complexes, RITS and RDRC, from fission yeast has provided further insight into the mechanism of RNAi-mediated heterochromatin assembly. These discoveries have given rise to a model in which small interfering RNA molecules act as specificity factors that initiate epigenetic chromatin modifications and double strand RNA synthesis at specific chromosome regions.  相似文献   

10.
Structure and function of argonaute proteins   总被引:8,自引:0,他引:8  
Argonaute (Ago) family proteins are multidomain proteins expressed in prokaryotic and eukaryotic organisms. In eukaryotes, Ago proteins are most well known for their roles in RNA silencing. In prokaryotes, the functions of Ago proteins are unknown, but based on their similarity to eukaryotic Ago proteins, they could be involved in nucleic acid-directed regulatory pathways related to RNA silencing. Recent structural and biochemical studies have shed new light on the function of this family of proteins. These studies reveal how these proteins recognize and cleave RNA and suggest a function for prokaryotic family members.  相似文献   

11.
12.

Background  

MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs (ncRNAs) which play important roles in eukaryotic gene regulation. miRNA biogenesis and activation is a complex process involving multiple protein catalysts and involves the large macromolecular RNAi Silencing Complex or RISC. While phylogenetic analyses of miRNA genes have been previously published, the evolution of miRNA biogenesis itself has been little studied. In order to better understand the origin of miRNA processing in animals and plants, we determined the phyletic occurrences and evolutionary relationships of four major miRNA pathway protein components; Dicer, Argonaute, RISC RNA-binding proteins, and Exportin-5.  相似文献   

13.
14.
15.
沈修婧  杨广 《昆虫知识》2016,(3):446-455
RNAi作为分子生物学的一种重要技术,在昆虫基因功能和功能基因组研究中得到广泛应用,同时,有关昆虫RNAi的机制也受到了大家的关注。近年来的研究结果表明,昆虫RNAi的通路与其他动物相同,根据引起基因沉默的RNA分子的类型,可以分为siRNA、miRNA和piRNA 3种不同的通路。昆虫RNAi通路中的核心元件包括了:(1)行使切割作用的RNaseⅢ家族成员Drosha和Dicer;(2)用来降解目的 mRNA的Argonaute蛋白;(3)dsRNA结合蛋白Pasha、R2D2和Loquacious。了解昆虫RNAi的通路及其核心元件,有助于我们更好地理解昆虫RNAi的分子机制和改进实现RNAi的方法,对促进昆虫RNAi技术的研究及其在害虫防控中的应用具有指导意义。  相似文献   

16.
The goal of functional genomics is to determine the function of each protein encoded by an organism. Typically, this is done by inactivating individual genes and, subsequently, analyzing the phenotype of the modified organisms. In higher eukaryotes, where a tremendous amount of alternative splicing occurs, such approaches are not feasible because they have the potential to simultaneously affect multiple proteins that could have quite distinct and important functions. Thus, it is necessary to develop techniques that inactivate only a subset of proteins synthesized from genes encoding alternatively spliced mRNAs. Here we demonstrate that RNA interference (RNAi) can be used to selectively degrade specific alternatively spliced mRNA isoforms in cultured Drosophila cells. This is achieved by treating the cells with double-stranded RNA corresponding to an alternatively spliced exon. This technique may prove to be a powerful tool to assess the function of proteins synthesized from alternatively spliced mRNAs. In addition, these results have implications regarding the mechanism of RNAi in Drosophila.  相似文献   

17.
Gene silencing by RNA interference (RNAi) can be a useful reverse genetics tool in eukaryotes. However, some species appear refractory to RNAi. To study the role of the differential expression of RNAi proteins in RNAi, we isolated partial dicer-2, argonaute-2 translin, vasa intronic gene (VIG) and tudor staphylococcus/micrococcal nuclease (TSN) genes from the tobacco hornworm, Manduca sexta, a well-studied insect model which we have found to be variably sensitive to RNAi. We found that the RNAi gene, translin, was expressed at minimal levels in M. sexta tissue and that there is a specific, dose-dependent upregulation of dicer-2 and argonaute-2 expression in response to injection with dsRNA, but no upregulation of the other genes tested. Upregulation of gene expression was rapid and transient. In order to prolong the upregulation we introduced multiple doses of dsRNA, resulting in multiple peaks of dicer-2 gene expression. Our results have implications for the design of RNAi experiments and may help to explain differences in the sensitivity of eukaryotic organisms to RNAi.  相似文献   

18.
19.
The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently.  相似文献   

20.
小RNA与蛋白质的相互作用   总被引:1,自引:0,他引:1  
刘默芳  王恩多 《生命科学》2008,20(2):178-182
小分子调控RNA,包括siRNA(small interfering RNA)、miRNA(microRNA)和piRNA(piwiinteracting RNA)、hsRNA(heterochromatin associatedsmall RNA)等,是当前生命科学研究的前沿热点。越来越多的证据表明,这些小分子RNA存在于几乎所有较高等的真核生物细胞中,对生物体具有非常重要的调控功能。它们通过各种序列特异性的RNA基因沉默作用,包括RNA干扰(RNAi)、翻译抑制、异染色质形成等,调控诸如生长发育、应激反应、沉默转座子等各种各样的细胞进程。随着对这些小分子调控RNA的发现,一些RNascⅢ酶家族成员、Argonaute蛋白质家族成员及RNA结合蛋白质等先后被鉴定为小RNA的胞内蛋白质合作者,参与小RNA的加工成熟和在细胞内行使功能。本综述简介一些RNA沉默作用途径中重要组分的结构和功能的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号