首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amplification of the genes coding for rRNA occurs in the oocytes of a wide variety of organisms. The amplification process appears to be mediated through a rolling-circle mechanism. The approximate molecular weight of the smallest rDNA circles is equivalent to the estimated combined molecular weight of DNA which codes for a single ribosomal RNA precursor molecule and an associated non-transcribed spacer DNA sequence. RNA-DNA hybridization studies carried out on oocytes of the house cricket, Acheta domesticus, suggest that DNA coding for rRNA accounts for only a small fraction of the rDNA satellite, all of which is amplified in the oocyte. In order to test the possibility that the remainder of the amplified rDNA represents spacer and to determine whether a rolling-circle mechanism might also be involved in amplification in A. domesticus oocytes, rDNA was isolated from ovaries of A. domesticus and spread for electron microscopy. A large proportion of the rDNA isolated from ovaries is circular, while main-band DNA and rDNA prepared from other tissues demonstrates few if any circles. The mean size of the smallest rDNA circles is approximately 8 times longer than the length estimated for DNA which codes for 18 S and 28 S rRNA. Denaturation mapping shows the rDNA circles to contain two major readily denaturing regions located about equidistant from one another on the circle. Each readily denaturing region accounts for 4–6% of the total DNA in the circle. The fact that only 12% of the average molecule is required to code for A. domesticus 18 S and 28 S rRNA is consistent with the hybridization data. Considerable size heterogeneity exists in the length of the smallest class of rDNA molecules. In the rDNA of other species such heterogeneity has been shown to reside in the non-transcribed spacer.  相似文献   

2.
A large extrachromosomal mass of Feulgen positive material, the DNA body, has been visualized in early prophase oocytes of crickets (Orthoptera: Gryllidae) representative of the closely related subfamilies Gryllinae and Nemobiinae. A similar structure is present in oocytes of representatives of two subfamilies of crickets (subfamilies Oecanthinae and Gryllotalpinae) which taxonomically and phylogenetically are quite separate from those mentioned previously. In situ hybridization demonstrates that the body contains amplified copies of genes coding for ribosomal RNA. Unlike the DNA body in early diplotene oocytes of representatives of the subfamily Gryllinae, which is closely associated with the developing nucleolar apparatus, the DNA body in oocytes of the Oecanthinae and Gryllotalpinae cannot be demonstrated during diplotene. In the Oecanthinae, the nucleolar apparatus of early diplotene stage oocytes is composed of four to seven separate structures, the ribonucleoprotein of which has a characteristically lamellated appearance. During late diplotene, these nucleoli give rise to many smaller structures which are distributed throughout the germinal vesicle. In early diplotene stage oocytes of Scapteriscus acletus (Subfamily: Gryllotalpinae), the nucleolar apparatus consists of a single compact mass of ribonucleoprotein. In contrast to the oocytes of all other crickets that have been studied, the nucleolus of S. acletus remains single throughout diplotene. In situ hybridization analysis indicates that the amplified genes coding for rRNA which are localized in the DNA body of early prophase oocytes become incorporated into this compact nucleolar mass. Differences in nucleolar structure appear to reflect differences in the organization of amplified genes coding for rRNA.  相似文献   

3.
Amplification of the genes coding for ribosomal RNA oocurs in the oocytes of a wide variety of organisms. In oocytes of various species of crickets (Orthoptera: Gryllidae) the amplified DNA is contained in a large extrachromosomal DNA body. Multiple nucleoli form about the periphery of the DNA body during the diplotene stage of meiosis I. In contrast to the general pattern of orthopteran oocytes, oocytes of the cockroach Blattella germanica demonstrate a single large nucleolus instead of many nucleoli. In order to determine whether the genes coding for rRNA are amplified in the oocytes of B. germanica, the relative amount of rDNA in oocytes was compared with the rDNA content of spermatocytes and somatic cells. An extrachromosomal DNA body similar to that present in crickets is not present in B. germanica. A satellite DNA band which contains nucleotide sequences complementary to rRNA accounts for approximately 3-5% of the total DNA in somatic and in male and female gametogenic tissues. Female cells contain approximately twice as much rDNA as do male cells. An XX-XO sex-determining mechanism is operative in B. germanica. In situ hybridization with rRNA indicates that the nucleolar organizer is located on one end of the X chromosome and that oocytes do not contain more than twice the amount of rDNA found in spermato cytes. The data indicate that rDNA is not amplified in the uninucleolate oocyte of B germanica.  相似文献   

4.
At a time in the life cycle when a large proportion of the oocytes of Acheta incorporate 3H-thymidine into an extrachromosomal DNA body, synthesis of a satellite or minor band DNA, the density of which is greater than main band DNA, is readily detected. Synthesis of the satellite DNA is not detectable in tissues, the cells of which do not have a DNA body, or in ovaries in which synthesis of extrachromosomal DNA by the oocytes is completed. The DNA body contains the amplified genes which code for ribosomal RNA. However, less than 1 percent of the satellite DNA, all of which appears to be amplified in the oocyte, is complementary to ribosomal 18S and 28S RNA. In situ hybridization demonstrates that non-ribosomal elements, like the ribosomal elements of the satellite DNA, are localized in the DNA body.Abbreviations used rRNA ribosomal RNA, includes 18S and 28S RNA - rDNA gene sequences complementary to rRNA - cRNA complementary RNA synthesized in vitro  相似文献   

5.
A large DNA-containing body is present in addition to the chromosomes in oocytes of the house cricket Acheta domesticus. Large masses of nucleolar material accumulate at the periphery of the DNA body during the diplotene stage of meiotic prophase I. RNA-DNA hybridization analysis demonstrates that the genes which code for 18S and 28S ribosomal RNA are amplified in the ovary. In situ hybridization indicates that the amplified genes are localized within the DNA body of early prophase cells. As the cells proceed through diplotene the DNA which hybridizes with ribosomal RNA is gradually incorporated into the developing nucleolar mass.  相似文献   

6.
7.
Summary The inheritance of both the mitochondrial DNA (mtDNA) and the nuclear-encoded extrachromosomal ribosomal DNA (rDNA) has been studied in the myxomycete, Didymium iridis, by DNA-DNA hybridization of labeled probes to total DNA at various stage of the life cycle. Both the mtDNA and rDNA populations rapidly become homogeneous in individuals, but there is a qualitative difference in the patterns of inheritance of these two molecules. One parental rDNA type was preferentially inherited in all crosses; selective replication of this molecule is tentatively proposed as the mechanism of inheritance. In contrast, either parental mtDNA type could be inherited. Since the inherited population of parental mtDNA molecules are not partitioned into cells in this coenocytic organism, no known mechanism of inheritance can explain the rapid and apparently random loss of one parental mtDNA type in individuals.  相似文献   

8.
The amplification of ribosomal genes has been studied in oocytes from Salmo irideus. In situ nucleic acid hybridization showed that the synthesis of nucleolar DNA begins in oogonium and proceeds slowly through leptotene and zygotene when a small amount of extrachromosomal nucleolar DNA is produced. In early pachytene there is a rapid build-up of nucleolar DNA demonstrable by rapid incorporation of tritiated thymidine. Synthesis stops completely in early diplotene when nucleolar DNA becomes dispersed over the inner surface of the nuclear envelope in the form of small Feulgen-positive granules. Photometric measurements of Feulgen stained nuclei showed that the final amount of amplified nucleolar DNA synthesized in each oocyte is approximately 20 g. The amplified DNA does not form a heterochromatic mass. The buoyant density of the amplified nucleolar DNA calculated from analytical centrifuge tracings in relation to DNA from Micrococcus luteus ( = 1.731 g cm–3) is 1.715 g cm–3 and corresponds to a G + C content of 57%. There are indications that the buoyant density of the somatic nucleolar DNA is lower than that of amplified nucleolar DNA.Similarities and differences between ribosomal gene amplifications in oocytes of Salmo irideus and the corresponding process in Xenopus are discussed.  相似文献   

9.
10.
11.
In the typical meroistic insect ovary, the oocyte nucleus synthesizes little if any RNA. Nurse cells or trophocytes actively synthesize ribosomes which are transported to and accumulated by the oocyte. In the telotrophic ovary a morphological separation exists, the nurse cells being localized at the apical end of each ovariole and communicating with the ooocytes via nutritive cords. In order to determine whether the genes coding for ribosomal RNA (rRNA) are amplified in the telotrophic ovary of the milkweed bug Oncopeltus fasciatus, the percentages of the genome coding for ribosomal RNA in somatic cells, spermatogenic cells, ovarian follicles, and nurse cells were compared. The oocytes and most of the nurse cells of O. fasciatus are uninucleolate. DNA hybridizing with ribosomal RNA is localized in a satellite DNA, the density of which is 1.712 g/cm(-3). The density of main-band DNA is 1.694 g/cm(-3). The ribosomal DNA satellite accounts for approximately 0.2% of the DNA in somatic and gametogenic tissues of both males and females. RNA-DNA hybridization analysis demonstrates that approximately 0.03% of the DNA in somatic tissues, testis, ovarian follicles, and isolated nurse cells hybridizes with ribosomal RNA. The fact that the percentage of DNA hybridizing with rRNA is the same in somatic and in male and female gametogenic tissues indicates that amplification of ribosomal DNA does not occur in nurse cells and that if it occurs in oocytes, it represents less than a 50-fold increase in ribosomal DNA. An increase in total genome DNA accounted by polyploidization appears to provide for increasing the amount of ribosomal DNA in the nurse cells.  相似文献   

12.
Lost in the zygote: the dilution of paternal mtDNA upon fertilization   总被引:1,自引:0,他引:1  
Wolff JN  Gemmell NJ 《Heredity》2008,101(5):429-434
The mechanisms by which paternal inheritance of mitochondrial DNA (mtDNA) (paternal leakage) and, subsequently, recombination of mtDNA are prevented vary in a species-specific manner with one mechanism in common: paternally derived mtDNA is assumed to be vastly outnumbered by maternal mtDNA in the zygote. To date, this dilution effect has only been described for two mammalian species, human and mouse. Here, we estimate the mtDNA content of chinook salmon oocytes to evaluate the dilution effect operating in another vertebrate; the first such study outside a mammalian system. Employing real-time PCR, we determined the mtDNA content of chinook salmon oocytes to be 3.2 x 10(9)+/-1.0 x 10(9), and recently, we determined the mtDNA content of chinook salmon sperm to be 5.73+/-2.28 per gamete. Accordingly, the ratio of paternal-to-maternal mtDNA if paternal leakage occurs is estimated to be 1:5.5 x 10(8). This contribution of paternal mtDNA to the overall mtDNA pool in salmon zygotes is three to five orders of magnitude smaller than those revealed for the mammalian system, strongly suggesting that paternal inheritance of mtDNA per offspring will be much less likely in this system than in mammals.  相似文献   

13.
We have used two approaches to search for sequence variants in the 18S coding region of amplified ribosomal DNA (rDNA) from Xenopus laevis oocytes. First, using clones derived from amplified rDNA, we compared the equivalent of a complete 18S coding region from two clones and short regions from two other clones with the 18S sequence previously determined from a "reference" clone. The respective sequences in all the clones were identical. Secondly, we examined greater than 60% of the 18S sequence in "pooled 18S genes" in uncloned amplified rDNA. The predominant sequence corresponded to that in the reference clone and no heterogeneities were apparent. Since many chromosomal rDNA units contribute to rDNA amplification the findings indicate that 18S coding sequences in X. laevis are largely homogeneous. The previously established sequence is the predominant one, thus providing a reliable basis for studies on 18S rRNA. Sequencing gels on uncloned amplified rDNA confirmed the absence of methylated cytosine in this DNA. The 18S sequence lacks major open reading frames.  相似文献   

14.
Four chloroplast (cp), one mitochondrial (mt), and one ribosomal nuclear (ITS) DNA regions were studied in four artificial and one natural interspecific Passiflora hybrids. The ITS results confirmed their hybrid origin and all mtDNAs were maternally inherited. The same, however, was not true for cpDNA. The four hybrids (three artificial and one natural) derived from species of the Passiflora subgenus showed a cpDNA paternal inheritance, while the one involving taxa of the Decaloba subgenus gave evidence of maternal transmission. These results are of significance for the ongoing studies which are being performed on the molecular evolution of this genus and furnish important background for investigations aimed at clarifying the factors which determine cpDNA inheritance.  相似文献   

15.
An interspecific artificial hybrid was produced between two economically important aquaculture flatfish: olive flounder (Paralichthys olivaceus) and starry flounder (P. stellatus). This hybrid displays the rapid growth characteristic of the former and tolerance to low temperatures and low salinity of the latter, but the genetics of inheritance in this hybrid have not been elucidated. Polymorphic microsatellite markers developed for P. olivaceus and P. stellatus were tested to determine if these markers can be used for analysis of parentage and genetic inheritance. Multiplex PCR using two primer sets that were specific to each species produced PCR products of different sizes; these could be used for the identification of interspecific hybrids. Among the 192 primers derived from olive flounder, 25.5% of the primer sets successfully amplified genomic DNA from starry flounder, and 23% of the 56 primer sets originating from starry flounder amplified DNA from olive flounder. Analysis of genetic inheritance in the hybrid using seven of the 62 microsatellite markers common to both species demonstrated classic Mendelian inheritance of these markers in the hybrid progeny, with the exception of one locus identified as a null allele in the hybrid. These results demonstrate that cross-specific microsatellite markers can be used tools for parentage analysis of hybrid flatfish, for mapping quantitative trait loci, for marker-assisted selective breeding, and for studies of the evolution of fish.  相似文献   

16.
从南方红豆杉(Taxus chinensis var.mairei)的幼茎中分离出一株产紫杉醇内生真菌J11.菌株J11的发酵提取物经高分辨质谱分析,证实J11菌株可产紫杉醇.提取该菌株的基因组DNA,扩增核糖体internal transcribed spacer(ITS)和28S核糖体large subunit rRNA gene(LSU)序列,经测序获得该菌的ITS序列和LSU序列.序列比对和检索结果表明,J11菌株为葡萄座腔菌(Botryosphaeria ssp.)属中的一个新菌株.形态学鉴定符合葡萄座腔菌属特征,高效液相色谱分析表明,J11菌株的紫杉醇含量约为615.1μg/L.本研究首次证实葡萄座腔菌J11是一株高产紫杉醇野生型菌株,具有潜在的应用前景.  相似文献   

17.
Ribosomal proteins are synthesized continuously in nonequimolar amounts during oogenesis in the mouse (M. J. LaMarca and P. M. Wassarman, 1979, Develop. Biol. 73, 103), even though ribosomal proteins are found in equimolar amounts in ribosomes. In this report, the distribution of newly synthesized ribosomal proteins between the cytoplasm and germinal vesicle (nucleus) of fully grown mouse oocytes has been examined. As compared to total newly synthesized protein, ribosomal proteins were found to be highly concentrated in the oocyte's germinal vesicle. Furthermore, an inverse relationship was found between rates of synthesis of individual ribosomal proteins and percentages of newly synthesized ribosomal proteins associated with germinal vesicles. As a result of this relationship, the amounts of newly synthesized ribosomal proteins associated with germinal vesicles approximated an equimolar situation. Even in the presence of actinomycin D, oocytes continued to synthesize ribosomal proteins which were found associated with germinal vesicles in amounts similar to those observed in the absence of the drug. These results suggest that, although synthesis of ribosomal proteins by mouse oocytes is not coordinately regulated, a post-translational mechanism exists for adjusting the stoichiometry of these proteins within the oocyte's germinal vesicle; this mechanism apparently is not dependent upon concomitant ribosomal-RNA synthesis.  相似文献   

18.
Break-induced replication (BIR) is essential for the repair of DNA double-strand breaks (DSBs) with single ends. DSBs-induced microhomology-mediated BIR (mmBIR) and template-switching can increase the risk of complex genome rearrangement. In addition, DSBs can also induce the multi-invasion-mediated DSB amplification. The mmBIR-induced genomic rearrangement has been identified in cancer cells and patients with rare diseases. However, when and how mmBIR is initiated have not been fully and deeply studied. Furthermore, it is not well understood about the conditions for initiation of multi-invasion-mediated DSB amplification. In the G2 phase oocyte of mouse, we identified a type of short-scale BIR (ssBIR) using the DNA replication indicator 5-ethynyl-2’-deoxyuridine (EdU). These ssBIRs could only be induced in the fully grown oocytes but not the growing oocytes. If the DSB oocytes were treated with Rad51 or Chek1/2 inhibitors, both EdU signals and DSB marker γH2A.X foci would decrease. In addition, the DNA polymerase inhibitor Aphidicolin could inhibit the ssBIR and another inhibitor ddATP could reduce the number of γH2A.X foci in the DSB oocytes. In conclusion, our results showed that DNA DSBs in the fully grown oocytes can initiate ssBIR and be amplified by Rad51 or DNA replication.  相似文献   

19.
20.
It has been suggested that Locusta migratoria amplifies its ribosomal RNA genes in the growing oocytes (Kunz (1967) Chromosoma20, 332–370). Cloned ribosomal DNA of L. migratoria was used to analyze rDNA structure and number. The rDNA is localized on three chromosome pairs in six nucleolus organizers. It was found that all structural variants of the rRNA genes which have been described previously are represented in the same relative amounts in DNA from isolated oocytes as in somatic cells. Furthermore, the rRNA gene number is not increased in oocyte DNA, i.e., amplification does not occur. Therefore, the large number of multiple nucleoli seen in the growing oocytes has to be interpreted as the fully extended and fully active set of chromosomal rRNA genes. The total rRNA gene number was determined by dot blot hybridization to be about 3300 genes/haploid genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号