首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Lac repressor binding to poly (d(A-T)). Conformational changes   总被引:10,自引:0,他引:10  
The binding of lac repressor to poly [d(A-T)] at low ionic strength has been investigated by circular dichroism, fluorescence and light scattering. Poly [d(A-T)] undergoes an important conformational change upon binding to lac repressor. The maximum number of binding sites corresponds to about one tetrameric repressor per 11 base pairs of poly[d(A-T)]. The inducer isopropyl β-D-thiogalactoside (IPTG) does not affect the binding of lac repressor to poly[d(A-T)]. It binds equally well to free and poly[d(A-T)] -bound repressor.  相似文献   

2.
Present results provide direct evidence of the nature of a conformational change in DNA when nucleosomes are formed from core histones and poly [d(A-T)]. First, we have found some features which have characteristic aspects of the A like conformation of DNA. Thus, an increased contribution due to a sugar conformation close to C3'-endo puckering is detected in the Raman spectra. In addition, the circular dichroism (C.D.) spectra of reconstituted chromatin with poly [d(A-T)] exhibits an increases intensity at about 262 nm. A second feature acquired by poly [d(A-T)] in nucleosome formation from core histones is related to the presence of a negative band at about 280 nm in the C.D.spectra. The nature of this change is correlated with a DNA conformation characterized by a decreased number of base pairs per turn (28,29). This indicates that these two features of reconstituted nucleosomes reflect the presence of two types of DNA conformations, which overall form is of the B type (22,36).  相似文献   

3.
Native DNA duplexes in fibers exist usually in one of three well-known (A, B and C) forms depending on relative humidity, type of cations and the amount of retained salt. To determine the precise influence of these factors and the effect of base composition, as well as base sequence, on DNA secondary structure, X-ray diffraction methods have been used to study all four synthetic DNA duplexes with repeated dinucleotide sequences, eight of the 12 with repeated trinucleotide sequences and seven analogues in which guanine was replaced with hypoxanthine. The results indicate that there are at least six additional allomorphs denoted by B′, C′, C″, D, E and S.The B′ form (h = 0.329 nm) observed for poly(dA) · poly(dT), poly(dI) · poly(dC) and poly[d(A-I)] · poly[d(C-T)] is a minor variant of the traditional B form (h = 0.338 nm) of native DNA. The two C-like forms C′ for poly[d(A-G-C)] · poly-[d(G-C-T)] and poly[d(G-G-T)] · poly[d(A-C-C)] and C″ for poly[d(A-G)] · poly-[d(C-T)] have, respectively, 91 and 92 symmetries which reflect repetition of trinucleotide and dinucleotide sequences, respectively. Although isocompositional with poly(dA) · poly(dT), the existence of the rather different D form (81) for poly[d(A-T)] · poly[d(A-T)] or for poly[d(A-A-T)] · poly[d(A-T-T)] is a clear demonstration of the sequence effect. The I · C pair generally mimics an A · T pair, but poly[d(I-I-T)] · poly[d(A-C-C)] provides a new (E) form with approximately 152 screw symmetry and with 〈h〉 = 0.325 nm and 〈t〉 = 48 dg per nucleotide. The S form (65) observed for poly[d(G-C)] · poly[d(G-C)] and poly[d(A-C)] · poly[d(G-T)] is an unusual left-handed polydinucleotide helix and is accessible to any alternating purine-pyrimidine sequence. In it the two nucleotides have quite different conformations and involve syn purine and anti pyrimidine nucleosides.  相似文献   

4.
31P- and 1H-nmr and laser Raman spectra have been obtained for poly[d(G-T)]·[d(C-A)] and poly[d(A-T)] as a function of both temperature and salt. The 31P spectrum of poly[d(G-T)]·[d(C-A)] appears as a quadruplet whose resonances undergo separation upon addition of CsCl to 5.5M. 1H-nmr measurements are assigned and reported as a function of temperature and CsCl concentration. One dimensional nuclear Overhauser effect (NOE) difference spectra are also reported for poly[d(G-T)]·[d(C-A)] at low salt. NOE enhancements between the H8 protons of the purines and the C5 protons of the pyrimidines, (H and CH3) and between the base and H-2′,2″ protons indicate a right-handed B-DNA conformation for this polymer. The NOE patterns for the TH3 and GH1 protons in H2O indicate a Watson–Crick hydrogen-bonding scheme. At high CsCl concentrations there are upfield shifts for selected sugar protons and the AH2 proton. In addition, laser Raman spectra for poly[d(A-T)] and poly[d(G-T)]·[d(C-A)] indicate B-type conformations in low and high CsCl, with predominantly C2′-endo sugar conformations for both polymers. Also, changes in base-ring vibrations indicate that Cs+ binds to O2 of thymine and possibly N3 of adenine in poly[d(G-T)]·[d(C-A)] but not in poly[d(A-T)]. Further, 1H measurements are reported for poly[d(A-T)] as a function of temperature in high CsCl concentrations. On going to high CsCl there are selective upfield shifts, with the most dramatic being observed for TH1′. At high temperature some of the protons undergo severe changes in linewidths. Those protons that undergo the largest upfield shifts also undergo the most dramatic changes in linewidths. In particular TH1′, TCH3, AH1′, AH2, and TH6 all undergo large changes in linewidths, whereas AH8 and all the H-2′,2″ protons remain essentially constant. The maximum linewidth occurs at the same temperature for all protons (65°C). This transition does not occur for d(G-T)·d(C-A) at 65°C or at any other temperature studied. These changes are cooperative in nature and can be rationalized as a temperature-induced equilibrium between bound and unbound Cs+, with duplex and single-stranded DNA. NOE measurements for poly[d(A-T)] indicate that at high Cs+ the polymer is in a right-handed B-conformation. Assignments and NOE effects for the low-salt 1H spectra of poly[d(A-T)] agree with those of Assa-Munt and Kearns [(1984) Biochemistry 23 , 791–796] and provide a basis for analysis of the high Cs+ spectra. These results indicate that both polymers adopt a B-type conformation in both low and high salt. However, a significant variation is the ability of the phosphate backbone to adopt a repeat dependent upon the base sequence. This feature is common to poly[d(G-T)]·[d(C-A)], poly[d(A-T)], and some other pyr–pur polymers [J. S. Cohen, J. B. Wouten & C. L Chatterjee (1981) Biochemistry 20 , 3049–3055] but not poly[d(G-C)].  相似文献   

5.
The binding of 9-hydroxyellipticine to calf thymus DNA, poly[d(A-T)]2, and poly-[d(G-C)]2 has been studied in detail by means of CD, linear dichroism, resonance light scattering, and molecular dynamics. The transition moment polarizations of 9-hydroxyelliptiycine were determined in polyvinyl alcohol stretched film. Spectroscopic solution studies of the DNA/drug complex are combined with theoretical CD calculations using the final 50 ps of a series of molecular dynamics simulations as input. The spectroscopic data shows 9-hydroxyellipticine to adopt two main binding modes, one intercalative and the other a stacked binding mode involving the formation of drug oligomers in the DNA major groove. Analysis of the intercalated binding mode in poly[d(A-T)]2 suggests the 9-hydroxyellipticine hydroxyl group lies in the minor groove and hydrogen bonds to water with the pyridine ring protruding into the major groove. The stacked binding mode was examined using resonance light scattering and it was concluded that the drug was forming small oligomer stacks rather than extended aggregates. Reduced linear dichroism measurements suggested a binding geometry that precluded a minor groove binding mode where the plane of the drug makes a 45° angle with the plane of the bases. Thus it was concluded that the drug stacks in the major groove. No obvious differences in the mode of binding of 9-hydroxyellipticine were observed between different DNA sequences; however, the stacked binding mode appeared to be more favorable for calf thymus DNA and poly[d(G-C)]2 than for poly[d(A-T)]2, an observation that could be explained by the slightly greater steric hindrance of the poly[d(A-T)]2 major groove. A strong concentration dependence was observed for the two binding modes where intercalation is favored at very low drug load, with stacking interactions becoming more prominent as the drug concentration is increased. Even at DNA : drug mixing ratios of 70:1 the stacked binding mode was still important for GC-rich DNAs. © 1998 John Wiley & Sons, Inc. Biopoly 46: 127–143, 1998  相似文献   

6.
The pressure dependence of the helix–coil transition of poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of NaCl and CsCl at concentrations between 10 and 200 mM is reported and used to calculate the accompanying volume change. We also investigated the binding parameters and volume change of ethidium bromide binding with poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of these two salts. The volume change of helix–coil transition of poly(dA)∙poly(dT) in Cs+-containing solutions differs by less than 1 cm3 mol− 1 from the value measured when Na+ is the counter-ion. We propose that this insensitivity towards salt type arises if the counter-ions are essentially fully hydrated around DNA and the DNA conformation is not significantly altered by salt types. Circular dichroism spectroscopy showed that the previously observed large volumetric disparity for the helix–coil transition of poly[d(A-T)]·poly[d(A-T)] in solutions containing Na+ and Cs+ is likely result of a Cs+-induced conformation change that is specific for poly[d(A-T)]·poly[d(A-T)]. This cation-specific conformation difference is mostly absent for poly(dA)∙poly(dT) and EB bound poly[d(A-T)]·poly[d(A-T)].  相似文献   

7.
We have studied the circular dichroism and ultraviolet difference spectra of T7 bacteriophage DNA and various synthetic polynucleotides upon addition of Escherichia coli RNA polymerase. When RNA polymerase binds nonspecifically to T7 DNA, the CD spectrum shows a decrease in the maximum at 272 but no detectable changes in other regions of the spectrum. This CD change can be compared with those associated with known conformational changes in DNA. Nonspecific binding to RNA polymerase leads to an increase in the winding angle, theta, in T7 DNA. The CD and UV difference spectra for poly[d(A-T)] at 4 degrees C show similar effects. At 25 degrees C, binding of RNA polymerase to poly[d(A-T)] leads to hyperchromicity at 263 nm and to significant changes in CD. These effects are consistent with an opening of the double helix, i.e. melting of a short region of the DNA. The hyperchromicity observed at 263 nm for poly[d(A-T)] is used to determine the number of base pairs disrupted in the binding of RNA polymerase holoenzyme. The melting effect involves about 10 base pairs/RNA polymerase molecule. Changes in the CD of poly(dT) and poly(dA) on binding to RNA polymerase suggest an unstacking of the bases with a change in the backbone conformation. This is further confirmed by the UV difference spectra. We also show direct evidence for differences in the template binding site between holo- and core enzyme, presumably induced by the sigma subunit. By titration of the enzyme with poly(dT) the physical site size of RNA polymerase on single-stranded DNA is approximately equal to 30 bases for both holo- and core enzyme. Titration of poly[d(A-T)] with polymerase places the figure at approximately equal to 28 base pairs for double-stranded DNA.  相似文献   

8.
A new purification technique for ‘single-stranded DNA-binding proteins’ from calf thymus permits the demonstration of a considerable heterogeneity within these proteins. Several molecular species are obtained with Mr between 24·103 and 30·103 and pI values between 6 and 8, showing significant differences with regard to the following functional properties: (1) strength of binding to single-stranded DNA; (2) lowering of melting temperature of poly[d(A-T)]; (3) stimulation of DNA polymerase α on a poly[d(A-T)] template. Analysis of trypsin digestion products demonstrates that the different molecular species share extensive primary sequence homology. Experiments with antibodies show that the different molecular species are antigenically related and that a 31 kDa protein present in low amounts in our preparations is very cross-reactive.  相似文献   

9.
We calculate room temperature thermal fluctuational base pair opening probabilities of B and Z DNA Poly[d(G-C)] at various salt concentrations and discuss the significance of thermal fluctuation in facilitating base pair disruption during B to Z transition. Our calculated base pair opening probability of the B DNA at lower salt concentrations and the probability of the Z DNA at high salt concentrations are in agreement with observations. The salt dependence of the probabilities indicates a B to Z transition at a salt concentration close to the observed concentration.  相似文献   

10.
Equilibrium binding experiments using fluorescence and absorption techniques have been performed throughout a wide concentration range (1 nM to 30 microM) of the dye Hoechst 33258 and several DNAs. The most stable complexes found with calf thymus DNA, poly[d(A-T)], d(CCGGAATTCCGG), and d(CGCGAATTCGCG) all have dissociation constants in the range (1-3) X 10(-9) M-1. Such complexes on calf thymus DNA occur with a frequency of about 1 binding site per 100 base pairs, and evidence is presented indicating a spectrum of sequence-dependent affinities with dissociation constants extending into the micromolar range. In addition to these sequence-specific binding sites on the DNA, the continuous-variation method of Job reveals distinct stoichiometries of dye-poly[d(A-T)] complexes corresponding to 1, 2, 3, 4, and 6 dyes per 5 A-T base pairs and even up to 1 and 2 (and possibly more) dyes per backbone phosphate. Models are suggested to account for these stoichiometries. With poly[d(G-C)] the stoichiometries are 1-2 dyes per 5 G-C pairs in addition to 1 and 2 dyes per backbone phosphate. Thermodynamic parameters for formation of the tightest binding complex between Hoechst 33258 and poly[d(A-T)] or d-(CCGGAATTCCGG) are determined. Hoechst 33258 binding to calf thymus DNA, chicken erythrocyte DNA, and poly[d(A-T)] exhibits an ionic strength dependence similar to that expected for a singly-charged positive ion. This ionic strength dependence remains unchanged in the presence of 25% ethanol, which decreases the affinity by 2 orders of magnitude. In addition, due to its strong binding, Hoechst 33258 easily displaces several intercalators from DNA.  相似文献   

11.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

12.
Raman spectra of six synthetic polydeoxyribonucleotide duplexes with different base sequences have been examined in aqueous solutions with different salt or nucleotide concentrations. Detailed conformational differences have been indicated between B and Z forms of poly[d(G-C)] X poly[d(G-C)], between B forms of poly[d(G-C)] X poly[d(G-C)] and poly[d(G-m5C)] X poly[d(G-m5C)], between A and B forms of poly(dG) X poly(dC), between B and "CsF" forms of poly[d(A-T)] X poly[d(A-T)], between B forms of poly[d(A-U)] X poly[d(A-U)] and poly[d(A-T)] X poly[d(A-T)], and between low- and high-salt (CsF) forms of poly(dA) X poly(dT). The Raman spectrum of calf-thymus DNA in aqueous solution was also observed and was compared with the Raman spectra of its fibers in A, B, and C forms.  相似文献   

13.
We report the temperature and salt dependence of the volume change (DeltaVb) associated with the binding of ethidium bromide and netropsin with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)]. The DeltaV(b) of binding of ethidium with poly(dA).poly(dT) was much more negative at temperatures approximately 70 degrees C than at 25 degrees C, whereas the difference is much smaller in the case of binding with poly[d(A-T)].poly[d(A-T)]. We also determined the volume change of DNA-drug interaction by comparing the volume change of melting of DNA duplex and DNA-drug complex. The DNA-drug complexes display helix-coil transition temperatures (Tm several degrees above those of the unbound polymers, e.g., the Tm of the netropsin complex with poly(dA)poly(dT) is 106 degrees C. The results for the binding of ethidium with poly[d(A-T)].poly[d(A-T)] were accurately described by scaled particle theory. However, this analysis did not yield results consistent with our data for ethidium binding with poly(dA).poly(dT). We hypothesize that heat-induced changes in conformation and hydration of this polymer are responsible for this behavior. The volumetric properties of poly(dA).poly(dT) become similar to those of poly[d(A-T)].poly[d(A-T)] at higher temperatures.  相似文献   

14.
Sequence-dependent variation in the conformation of DNA   总被引:50,自引:0,他引:50  
The specificity of action of the enzyme DNAase I on double-stranded DNA polymers of defined sequence has been investigated. The results obtained with the alternating copolymers poly[d(A-T)] · poly[d(A-T)] and poly[d(G-C)] · poly[d(G-C)] support the suggestion of Klug et al. (1979) that regions of double-stranded DNA containing alternating purine-pyrimidine sequences may exist as structural variants of the classical B-form under physiological salt conditions. Digestion of defined oligomers containing alternating dG-dC sequences indicate that these too exist in some “alternating-B” structure in solution under similar conditions. The results obtained with the oligomers also provide a number of insights into the mode of action of DNAase I.In the case of the B-DNA dodecamer d(C-G-C-G-A-A-T-T-C-G-C-G), for which the crystal structure has been solved (Dickerson &; Drew, 1981), there is a very good correlation between the sites of rapid DNAase I cutting and positions of high local helical twist.  相似文献   

15.
16.
Summary The effect of Aclacinomycin B (ACM-B), an anthracycline antitumor antibiotic, on the DNA-dependent RNA synthesis using single- and double-stranded DNAs of known base content and sequence is studied. The data show that ACM-B effectively inhibits the double-stranded DNA-directed RNA synthesis with a preference of poly[d(A-T)] > poly[d(G-C)] > poly[d(I-C)]. In contrast, it has no inhibitory effect on the template function of single-stranded DNA (e.g. poly dA, poly dT, and poly dC). These results suggest that the mechanism of ACM-13 inhibition, like other anthracycline antibiotics, is by intercalation. In addition to the base specificity, there are also dramatic differences in inhibition depending on the base sequence in the DNA template. Thus, ACM-13 preferentially inhibits the alternating double-stranded copolymers over the double-stranded homopolymers; e.g. poly [d(A-T)] is inhibited to a greater extent than poly dA · poly dT and poly [d(G-C)] is inhibited more than poly dG · poly dC. Since the inhibition by ACM-13 can be totally abolished when assayed in excess amount of DNA, this result suggests that ACM-B inhibition of RNA synthesis is solely on the DNA template (which is in support of the intercalation model), and has ruled out the possibility that ACM-B may also exert an inhibitory effect on the activity of RNA polymerase per se.  相似文献   

17.
The rate constants of 1H----3H exchange between water and C8H-groups of purine residues of alternating polynucleotides: poly[d(A-C)].poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)], as well as Escherichia coli DNA, dAMP and dGMP, in solutions with high concentration (4.3 or 6 M) CsF, in water ethanol (60%) solution and (in comparison) in 0.15 M NaCl were determined at 25 degrees C. The 1H----3H exchange rate exchange rate constants for adenylic (kA) and guanylic (kG) residues of polynucleotides were compared with the corresponding constant for DNA and mononucleotides. It was shown that at conditions when poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)] exhibit the "X-form" CD spectrum, alteration of exchange rates in polynucleotides (approximately 2-fold increase in kA in CSF and approximately 1.5-fold decrease in kA and kG in 60% ethanol with 0.15 M NaCl) is due to the effect of solvents on the chemical reactivity of purine residues, but does not reflect a conformational transition. The analysis of these results allows us to conclude, that alternating polynucleotides under the above mentioned conditions retain roughly the conformations inherent in them in 0.15 M NaCl: poly[d(A-C)].poly[d(G-T)] conformation in 4.3 m CsF or 60% ethanol differs only insignificantly from the "canonic" B-DNA, whereas the poly[d(A-T)].poly[d(A-T)] conformation in 6 M CSF corresponds to B-alternating DNA.  相似文献   

18.
The Pressure Dependence of the Helix-Coil Transition Temperature (Tm) of Poly[d(G-C)] was studied as a function of sodium ion concentration in phosphate buffer. The molar volume change of the transition (ΔV) was calculated using the Clapeyron equation and calorimetrically determined enthalpies. The ΔV of the transition increased from +4.80 (±0.56) to +6.03 (±0.76) mL mol?1 as the sodium ion concentration changed from 0.052 to 1.0M. The van't Hoff enthalpy of the transition calculated from the half-width of the differentiated transition displayed negligible pressure dependence: however, the value of this parameter decreased with increasing sodium ion concentration, indicating a decrease in the size of the cooperative unit. The volume change of the transition exhibits the largest magnitude of any double-stranded DNA polymer measured using this technique. For poly[d(G-C)] the magnitude of the change in ΔV with sodium ion concentration (0.94 ± 0.05 mL mol?1) is approximately one-half that observed for either poly[d(A-T)] or poly (dA)·poly(dT). The ΔV values are interpreted as arising from changes in the hydration of the polymer due to the release of counterions and changes in the stacking of the bases of the coil form. As a consequence of solvent electrostriction, the release of counterions makes a net negative contribution to the total ΔV, implying that disruption of the slacking interactions contributes a positive volume change to the total ΔV. The larger magnitude of the ΔV compared with that of other double-stranded polymers may be due in part to the high helix-coil transition temperature of poly[d(G-C)], which will attenuate the contribution of electrostriction to the total volume change. The data in addition show that in the absence of other cellular components, the covalent structure of DNA is stabile under conditions of temperature and pressure more extreme than those experienced by any known organism. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Melting measurements of the mono-base-pair DNA polymers showed that the melting temperature Tm of the B-DNA homopolymer poly (dA ) · poly (dT) is higher than that of the copolymer poly [d(A-T)]. On the other hand, the Tmof the B-DNA homopolymer poly (dG) · poly (dC) is lower than that of the copolymer poly [d (G-C)]. From a structural point of view, the cross-strand base-stacking interaction in a DNA homopolymer is weaker than that in a DNA copolymer with the same base pair. One would then expect that all the DNA homopolymers are less stable than the copolymer with the same base pair. We find that the inversion of the melting order seen in the AT mono-base-pair DNA polymers is caused by the enhanced thermal stability of poly (dA) · poly (dT) from a well-defined spine of hydration attached to its minor groove. In this paper we employ the modified self-consistent phonon theory to calculate base-pair opening probabilities of four B-DNA polymers: poly(dA)-poly(dT), poly(dG) · poly(dC), poly[d(A-T)], and poly[d(G-C)] at temperatures from room temperature through the melting regions. Our calculations show that the spine of hydration can give the inverted melting order of the AT polymers as compared to the GC polymers in fair agreement with experimental measurements. Our calculated hydration spine disruption behavior in poly(dA) · poly(dT) at premelting temperatures is also in agreement with experimentally observed premelting transitions in poly (dA) · poly (dT). The work is in a sense a test of the validity of our models of nonbonded interactions and spine of hydration interactions. We find we have to develop the concept of a strained bond to fit observations in poly (dA) · poly(dT). The strained-bond concept also explains the otherwise anomalous stability of the hydration chain. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Through the utilization of optically active DNP-derivatives of l- and d-proline, evidence is presented which suggests that nucleic acids exist as right-handed helices in solution. The results of ultraviolet absorption, circular dichroism, proton magnetic resonance (pmr), Tm of the helix-coil transition, viscometric, and binding studies are consistent with the above interpretation. It is shown that several types of DNA (i.e., salmon sperm, calf thymus, Micrococcus luteus, poly d(A-T)-poly d(A-T) and poly d(I-C)-poly d(I-C)) exist in a right-handed helical structure in solution. In addition, evidence is presented which strongly indicates that the 2,4-dinitroaniline ring of DNP-proline is intercalated between base-pairs of DNA and the prolyl side chain situated in the minor groove. Moreover, it is shown that the more sterically hindered DNP-derivatives exhibit a higher selectivity for A-T binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号