首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation was initiated to study the pathology and biology of the regular mosquito iridescent virus (RMIV) in the black salt marsh mosquito, Aedes taeniorhynchus. RMIV was capable of infecting a variety of tissues within its host. Cells of the fat body, tracheal epithelium, imaginal discs, and epidermis were the primary sites of viral replication. Extensive destruction of the fat body by this virus resulted in the death of most infected mosquitoes before they reached the adult stage. Other tissues which were involved to a lesser extent were hemocytes, esophagus, nerve, muscle, and both larval and adult ovaries.  相似文献   

2.
A bioassay of mosquito iridescent virus (MIV) of Aedes taeniorhynchus was developed using cell cultures of Aedes aegypti. The dilution end point technique was based on the occurrence of cytopathic effects which were optimum at 31°C. Peleg's A. aegypti cell line was more sensitive and reliable than Singh's A. aegypti cell line for infectivity titration of the “R” and “T” strains of MIV. The highest tissue culture infectivity dose 50s (TCID50) were elicited by virion:cell ratios of approximately 10. TCID50 titers were significantly reduced by virus neutralization with either homologous or heterologous antiserum to either RMIV or TMIV. The virus propagated in either cell line was not infectious to A. taeniorhynchus larvae, or to the respective cells from which the virus was produced. All plaque assay attempts were unsuccessful.  相似文献   

3.
The enzyme-linked immunosorbent assay (ELISA) double antibody method provided an efficient method for detecting iridescent virus (type 22) in purified preparations and extracts of Galleria mellonella larvae; 10 ng of purified virus/ml were detected with confidence. The ELISA method discriminated between the five iridescent viruses tested.  相似文献   

4.
Invertebrate iridescent viruses (Iridoviridae) possess a highly cytotoxic protein. In mosquitoes (Diptera: Culicidae), invertebrate iridescent virus 6 (IIV-6) usually causes covert (inapparent) infection that reduces fitness. To determine whether sublethal effects of IIV-6 are principally due to cytotoxicity of the viral inoculum (which inhibits macromolecular synthesis in the host), or caused by replication of the virus larvae of the mosquito Aedes aegypti (L) were exposed to untreated IIV-6 virus that had previously been deactivated by heat or ultraviolet light. Control larvae were not exposed to virus. Larval development time was shortest in control larvae and extended in larvae exposed to untreated virus. Covertly infected mosquitoes laid significantly fewer eggs, produced between 20 and 35% fewer progeny and had reduced longevity compared to other treatments. Wing length was shortest in mosquitoes exposed to heat-deactivated virus. Multivariate analysis of the same data identified fecundity and progeny production as the most influential variables in defining differences among treatments. Overall, viral infection resulted in a 34% decrease in the net reproductive rate (R0) of covertly infected mosquitoes, vs. only 5-17% decrease of R0 following treatments with deactivated virus, compared to controls. Sublethal effects of IIV-6 in Ae. aegypti appear to be mainly due to virus replication, rather than cytotoxic effects of the viral inoculum.  相似文献   

5.
Relationships among some cytoplasmic deoxyriboviruses were investigated by deoxyribonucleic acid/ribonucleic acid hybridization experiments. Evidence of base-sequence homology between nucleic acids of different viruses was found within, but not between, the poxvirus and iridescent virus groups. Viruses of the vaccinia subgroup of poxviruses were 30 to 100% related, and the degree of relatedness was correlated with serological relatedness. Relationships within the iridescent virus group depended on the laboratory of origin and passage history of the virus strains used. None of these viruses was related to a superficially similar virus of frogs.  相似文献   

6.
Mosquito-borne viruses encompass a range of virus families, comprising a number of significant human pathogens (e.g., dengue viruses, West Nile virus, Chikungunya virus). Virulent strains of these viruses are continually evolving and expanding their geographic range, thus rapid and sensitive screening assays are required to detect emerging viruses and monitor their prevalence and spread in mosquito populations. Double-stranded RNA (dsRNA) is produced during the replication of many of these viruses as either an intermediate in RNA replication (e.g., flaviviruses, togaviruses) or the double-stranded RNA genome (e.g., reoviruses). Detection and discovery of novel viruses from field and clinical samples usually relies on recognition of antigens or nucleotide sequences conserved within a virus genus or family. However, due to the wide antigenic and genetic variation within and between viral families, many novel or divergent species can be overlooked by these approaches. We have developed two monoclonal antibodies (mAbs) which show co-localised staining with proteins involved in viral RNA replication in immunofluorescence assay (IFA), suggesting specific reactivity to viral dsRNA. By assessing binding against a panel of synthetic dsRNA molecules, we have shown that these mAbs recognise dsRNA greater than 30 base pairs in length in a sequence-independent manner. IFA and enzyme-linked immunosorbent assay (ELISA) were employed to demonstrate detection of a panel of RNA viruses from several families, in a range of cell types. These mAbs, termed monoclonal antibodies to viral RNA intermediates in cells (MAVRIC), have now been incorporated into a high-throughput, economical ELISA-based screening system for the detection and discovery of viruses from mosquito populations. Our results have demonstrated that this simple system enables the efficient detection and isolation of a range of known and novel viruses in cells inoculated with field-caught mosquito samples, and represents a rapid, sequence-independent, and cost-effective approach to virus discovery.  相似文献   

7.
The insecticidal properties of certain entomopathogenic viruses can be greatly improved in mixtures with substances that affect the integrity of the insect peritrophic membrane, particularly optical brighteners. We aimed to determine the effect of an optical brightener, Blankophor BBH, and an abrasive compound, silicon carbide, alone and in mixtures, on the prevalence of patent and covert infection of Aedes aegypti (L.) (Diptera: Culicidae) by Invertebrate iridescent virus 6 (IIV‐6) (Iridoviridae). The prevalence of patent infection by IIV‐6 was < 1.5% in all treatments involving virus. Contrary to predictions, there were significantly fewer patent infections in virus treatments involving Blankophor with or without silicon carbide compared with controls. Covert infection of adults detected by insect bioassay was between 6.7 and 12.2%, although no significant differences were observed between treatments. Exposure to IIV‐6 alone or silicon carbide alone did not significantly increase larval mortality compared to the controls, whereas exposure to Blankophor alone, or in any combination with IIV‐6 or silicon carbide, clearly increased larval mortality. These effects did not carry‐over to the pupal stage. Adult females emerged ~1.5 days later than males. Compared to control insects, female development rate was extended by 11.4 and 12.6% in the treatments involving IIV‐6 alone and silicon carbide alone, respectively. The sex ratio at adult emergence did not differ significantly between control insects and those of other treatments. These results support the hypothesis that the gut is unlikely to represent the principal point of infection of mosquito larvae by iridescent viruses.  相似文献   

8.
Dengue virus envelope protein (E) contains two N-linked glycosylation sites, at Asn-67 and Asn-153. The glycosylation site at position 153 is conserved in most flaviviruses, while the site at position 67 is thought to be unique for dengue viruses. N-linked oligosaccharide side chains on flavivirus E proteins have been associated with viral morphogenesis, infectivity, and tropism. Here, we examined the relevance of each N-linked glycan on dengue virus E protein by removing each site in the context of infectious viral particles. Dengue viruses lacking Asn-67 were able to infect mammalian cells and translate and replicate the viral genome, but production of new infectious particles was abolished. In addition, dengue viruses lacking Asn-153 in the E showed reduced infectivity. In contrast, ablation of one or both glycosylation sites yielded viruses that replicate and propagate in mosquito cells. Furthermore, we found a differential requirement of N-linked glycans for E secretion in mammalian and mosquito cells. While secretion of E lacking Asn-67 was efficient in mosquito cells, secretion of the same protein expressed in mammalian cells was dramatically impaired. Finally, we found that viruses lacking the carbohydrate at position 67 showed reduced infection of immature dendritic cells, suggesting interaction between this glycan and the lectin DC-SIGN. Overall, our data defined different roles for the two glycans present at the E protein during dengue virus infection, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation.  相似文献   

9.
Hamster cells which transformed after exposure to herpes simplex virus type 2 previously irradiated with ultraviolet light were tested for the presence of hamster leukosis viruses or their virus-specific antigens. Three techniques that were used did not detect the presence of either hamster C-type particles or antigens commonly associated with such structures. The implication of these findings to current concepts of virus oncology is discussed.  相似文献   

10.
11.
Soil represents the principal environmental reservoir of many insect-pathogenic viruses. We compared the adsorption and infectivity of one occluded and two nonoccluded viruses, Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) (Baculoviridae), Cricket paralysis virus (CrPV) (Dicistroviridae), and Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae), respectively, in mixtures with a selection of soil-forming minerals. The relative infective titers of HaSNPV and CrPV were unchanged or slightly reduced in the presence of different minerals compared to their titers in the absence of the mineral. In contrast, the infective titer of IIV-6 varied according to the mineral being tested. In adsorption studies, over 98% of HaSNPV occlusion bodies were adsorbed by all the minerals, and a particularly high affinity was observed with ferric oxide, attapulgite, and kaolinite. In contrast, the adsorption of CrPV and IIV-6 differed markedly with mineral type, with low affinity to bentonites and high affinity to ferric oxide and kaolinite. We conclude that interactions between soil-forming minerals and insect viruses appear to be most important in nucleopolyhedroviruses, followed by invertebrate iridescent viruses, and least important in CrPV, which may reflect the ecology of these pathogens. Moreover, soils with a high content of iron oxides or kaolinite would likely represent highly effective reservoirs for insect-pathogenic viruses.  相似文献   

12.
Mosquito iridescent viruses (MIV) are members of the genus Chloriridovirus that currently contains only the type IIV-3 from Aedestaeniorhynchus. The complete genome of invertebrate iridescent virus -3 (IIV-3) has been sequenced and the availability of a tissue culture system would facilitate functional genomic studies. This investigation, using quantitative PCR and electron microscopy, has determined that the mosquito cell lines Aedes aegypti (Aag2), Aedes albopictus (C6/36) and Anopheles gambiae (4a3A) as well as the lepidopteran cell line from Spodoptera frugiperda (SF9) are permissive to IIV-3 infection. However, IIV-3 infection remained longer in Aag2 and C6/36 cells. Virus produced in C6/36 cell line was infectious to larvae of A. taeniorhynchus by injection and per os. Ultrastructural examination of 4a3A and SF9 cells infected with IIV-3 revealed an unusual feature, where virions were localized to mitochondria. It is speculated that containment with mitochondria may play a role in the lack of persistence in these cell lines.  相似文献   

13.
Mosquitoes are classified into approximately 3500 species and further grouped into 41 genera. Epidemiologically, they are considered to be among the most important disease vectors in the world and they can harbor a wide variety of viruses. Several mosquito viruses are considered to be of significant medical importance and can cause serious public health issues throughout the world. Such viruses are Japanese encephalitis virus (JEV), dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV). Others are the newly recognized mosquito viruses such as Banna virus (BAV) and Yunnan orbivirus (YNOV) with unclear medical significance. The remaining mosquito viruses are those that naturally infect mosquitoes but do not appear to infect humans or other vertebrates. With the continuous development and improvement of mosquito and mosquito-associated virus surveillance systems in China, many novel mosquito-associated viruses have been discovered in recent years. This review aims to systematically outline the history, characteristics, distribution, and/or current epidemic status of mosquito-associated viruses in China.  相似文献   

14.
The genus Flavivirus consists of more than 70 virus species and subtypes, the majority of which are transmitted by mosquitoes or ticks, although some have no known vector (NKV). The ability of these viruses to infect cultured cells derived from mosquito or tick species offers a useful insight into the suitability of such vectors to harbour and replicate particular viruses. We undertook a comparative study of the susceptibility of mammalian Vero cells, a clonal mosquito cell line (C6/36) and recently developed cell lines derived from the ticks (Acari: Ixodidae) Ixodes ricinus (L.) (IRE/CTVM18), I. scapularis (Say) (ISE6), Rhipicephalus appendiculatus (Neumann) (RAE/CTVM1) and Amblyomma variegatum (Fabricius) (AVL/CTVM17) to infection with 13 flaviviruses (and one alphavirus) using immunofluorescence microscopy and plaque assay techniques. The C6/36 mosquito cell line was infected by all the mosquito-borne flaviviruses tested but not by NKV viruses or tick-borne viruses, with the exception of Langat virus (LGTV). The tick cell lines were susceptible to infection by all of the tick-borne viruses tested, as well as two mosquito-borne viruses, West Nile virus (WNV) and the alphavirus, Venezuelan equine encephalitis virus (VEEV), but not other mosquito-borne viruses or NKV viruses.  相似文献   

15.
已发现100余种蚊传虫媒病毒在世界各地流行,其引发的人兽共患病是全世界关注的公共卫生问题。长期以来我国仅发现乙型脑炎和登革热两种蚊传虫媒病毒病,但近年来新发现西尼罗病毒和Tahyna病毒及其感染疾病流行。从我国新疆维吾尔自治区采集的蚊虫标本中分离到西尼罗病毒,大量血清学研究证明当地不仅存在西尼罗病毒感染所致疾病,还发生过西尼罗病毒感染引发的病毒性脑炎流行。目前已从新疆维吾尔自治区、青海省和内蒙古自治区采集的蚊虫标本中分离到Tahyna病毒,并发现其在自然界动物中的循环和导致的人类感染流行。西尼罗病毒和Tahyna病毒及其相关感染性疾病的发现为我国虫媒病毒及虫媒病毒病的预防与控制提出了新的挑战。  相似文献   

16.
These studies compared three genetically distinct mosquito densoviruses Aedes aegypti (AeDNV), Hemagogus equinus (HeDNV), and Aedes Peruvian (APeDNV) densoviruses in a laboratory investigation to begin to evaluate their potential as mosquito control agents. A real-time polymerase chain reaction (PCR) assay for quantification of viral genomes and a standardized mosquito infection protocol were developed. Mortality associated with exposure to AeDNV increased in a dose-dependent manner, with the maximum mortality of 75.1% occurring in those organisms exposed to the highest dose of virus. The majority of death occurred as larvae. Similar results were observed with AeDNV produced from ground larvae and AeDNV produced from cell culture. Exposure of mosquitoes to HeDNV and APeDNV resulted in lower mortality, with values peaking at 33.5% for HeDNV and 27.8% for APeDNV. AeDNV-exposed larvae develop at a slower rate than nonexposed and HeDNV- and APeDNV-exposed larvae. Decreased virulence does not reflect a decrease in virus replication. PCR analysis of infectivity rates and titers in adults revealed reproduction of all three viruses, with an average viral titer of approximately 10 logs/mosquito after exposure to the highest dose of each virus. Accumulation of virus in the larval-rearing water was also observed with values approaching 10-11 logs/ml for each virus. These data indicate that there are dramatic differences in the pathogenicity among mosquito densoviruses.  相似文献   

17.
Polyacrylamide gel analysis of the structural proteins of three types of iridescent viruses (2, 6, and 9) demonstrated that the purified virions had one major and more than 20 minor polypeptides. Surface labeling procedures performed on pure intact virions, using 125I in the presence of lactoperoxidase and chloramine T (at low iodine concentrations), demonstrated that the major and two or three minor polypeptides were located on the outside. The major structural polypeptide was isolated from each virus type by preparative polyacrylamide gel electrophoresis. Amino acid analysis indicated that this protein was very similar in the three iridescent viruses. The three polypeptides had an identical N terminal (proline). While the major polypeptide of each virus has a slightly different molecular weight as determined by polyacrylamide gel electrophoresis, the similarities in iodine labeling, N terminals, and amino acids suggests a common function for this protein.  相似文献   

18.
Physicochemical properties of tipula iridescent virus   总被引:2,自引:0,他引:2       下载免费PDF全文
The molecular weight of Tipula iridescent virus, based on sedimentation and diffusion coefficients, was 5.51 × 108, with hydration of 0.57 g of water per g of virus. Deoxyribonucleic acid content, based on total inorganic phosphorus liberated, was 19 ± 0.2%. At 260 mμ, the virus gave an uncorrected absorbance of 18.2 cm2/mg of virus and a light-scattering corrected absorbance of 9.8 cm2/mg of virus. Amino acid analyses of the virus protein revealed a remarkable similarity to Sericesthis iridescent virus. The possibility is discussed that the four iridescent insect viruses reported to date bear a strain relationship.  相似文献   

19.
A system has been developed for generating chimeric yellow fever/Japanese encephalitis (YF/JE) viruses from cDNA templates encoding the structural proteins prM and E of JE virus within the backbone of a molecular clone of the YF17D strain. Chimeric viruses incorporating the proteins of two JE strains, SA14-14-2 (human vaccine strain) and JE Nakayama (JE-N [virulent mouse brain-passaged strain]), were studied in cell culture and laboratory mice. The JE envelope protein (E) retained antigenic and biological properties when expressed with its prM protein together with the YF capsid; however, viable chimeric viruses incorporating the entire JE structural region (C-prM-E) could not be obtained. YF/JE(prM-E) chimeric viruses grew efficiently in cells of vertebrate or mosquito origin compared to the parental viruses. The YF/JE SA14-14-2 virus was unable to kill young adult mice by intracerebral challenge, even at doses of 10(6) PFU. In contrast, the YF/JE-N virus was neurovirulent, but the phenotype resembled parental YF virus rather than JE-N. Ten predicted amino acid differences distinguish the JE E proteins of the two chimeric viruses, therefore implicating one or more residues as virus-specific determinants of mouse neurovirulence in this chimeric system. This study indicates the feasibility of expressing protective antigens of JE virus in the context of a live, attenuated flavivirus vaccine strain (YF17D) and also establishes a genetic system for investigating the molecular basis for neurovirulence determinants encoded within the JE E protein.  相似文献   

20.
Abstract Sublethal viral infections can cause changes in the body size and demography of insect vectors, with important consequences for population dynamics and the probability that individual mosquitoes will transmit disease. This study examined the effects of covert (sublethal) infection by Invertebrate iridescent virus 6 (IIV‐6) on the demography of female Aedes aegypti and the relationship between key life history parameters in covertly infected female insects compared with healthy (control) insects or non‐infected mosquitoes that had survived exposure to virus inoculum without becoming infected. Of the female mosquitoes that emerged following exposure to virus inoculum and were offered blood meals, 29% (43/150) proved positive for covert IIV‐6 infection. The net reproductive rate (R0) of covertly infected females was 50% lower for infected females compared to control mosquitoes, whereas non‐infected exposed females had an R0 approximately 15% lower than that of controls. Reproduction caused a significant decrease of about 13 days in mosquito longevity compared to females that did not reproduce (P < 0.001). Infected females lived 5–8 days less than non‐infected exposed females or controls, respectively (P = 0.028). Infected females and non‐infected exposed females both had significantly shorter wings than control insects (P < 0.001). There was a significant positive correlation between wing length and longevity in covertly infected female mosquitoes but not in control or non‐infected exposed mosquitoes. Longer lived females produced more eggs in all treatments. There were no significant correlations between body size and fecundity or the production of offspring. There was also no correlation between fecundity and fertility, suggesting that sperm inactivation was a more likely cause of decreased fertility in older mosquitoes than sperm depletion. We conclude that covert infection by iridescent virus is likely to reduce the vectorial capacity of this mosquito.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号