首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pro-inflammatory cytokines are implicated as the main mediators of beta-cell death during type 1 diabetes but the exact mechanisms remain unknown. This study examined the effects of interleukin-1beta (IL-1beta), interferon-gamma (IFNgamma) and tumour necrosis factor alpha (TNFalpha) on a rat insulinoma cell line (RIN-r) in order to identify the core mechanism of cytokine-induced beta-cell death. Treatment of cells with a combination of IL-1beta and IFNgamma (IL-1beta/IFNgamma)induced apoptotic cell death. TNFalpha neither induced beta-cell death nor did it potentiate the effects of IL-1beta, IFNgamma or IL-1beta/IFNgamma . The cytotoxic effect of IL-1beta/IFNgamma was associated with the expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide. Adenoviral-mediated expression of iNOS (AdiNOS) alone was sufficient to induce caspase activity and apoptosis. The broad range caspase inhibitor, Boc-D-fmk, blocked IL-1beta/IFNgamma -induced caspase activity, but not nitric oxide production nor cell death. However, pre-treatment with L-NIO, a NOS inhibitor, prevented nitric oxide production, caspase activity and reduced apoptosis. IL-1beta/IFNgamma -induced apoptosis was accompanied by loss of mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9, -7 and -3. Transduction of cells with Ad-Bcl-X(L) blocked both iNOS and cytokine-mediated mitochondrial changes and subsequent apoptosis, downstream of nitric oxide. We conclude that cytokine-induced nitric oxide production is both essential and sufficient for caspase activation and beta-cell death, and have identified Bcl-X(L) as a potential target to combat beta-cell apoptosis.  相似文献   

2.
Although interferon (IFN)-beta is firmly established as a therapeutic agent for multiple sclerosis, information regarding its role in astrocyte cytokine production is limited. In primary cultures of human astrocytes, we determined the effects of IFN-beta on astrocyte cytokine [tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6] and inducible nitric oxide synthase (iNOS) expression by ribonuclease protection assay and ELISA. We found that IFN-beta inhibited astrocyte cytokine/iNOS induced by IL-1 plus IFN-gamma, but in the absence of IFN-gamma, IFN-beta enhanced IL-1-induced cytokine/iNOS expression. Electrophoretic mobility shift analysis (EMSA) demonstrated that IFN-gamma induced sustained IFN-gamma-activated sequence (GAS) binding, while IFN-beta induced transient GAS binding. When used together, IFN-beta inhibited IFN-gamma-induced GAS binding activity. Nuclear factor-kappa B (NF-kappaB) activation was not altered by either IFNs, whereas IFN stimulated response element (ISRE) was only activated by IFN-beta and not IFN-gamma. These results suggest that IFN-beta can both mimic and antagonize the effect of IFN-gamma by modulating induction of nuclear GAS binding activity. Our results demonstrating differential regulation of astrocyte cytokine/iNOS induction by IFN-beta are novel and have implications for inflammatory diseases of the human CNS.  相似文献   

3.
4.
Ren G  Zhang L  Zhao X  Xu G  Zhang Y  Roberts AI  Zhao RC  Shi Y 《Cell Stem Cell》2008,2(2):141-150
Mesenchymal stem cells (MSCs) can become potently immunosuppressive through unknown mechanisms. We found that the immunosuppressive function of MSCs is elicited by IFNgamma and the concomitant presence of any of three other proinflammatory cytokines, TNFalpha, IL-1alpha, or IL-1beta. These cytokine combinations provoke the expression of high levels of several chemokines and inducible nitric oxide synthase (iNOS) by MSCs. Chemokines drive T cell migration into proximity with MSCs, where T cell responsiveness is suppressed by nitric oxide (NO). This cytokine-induced immunosuppression was absent in MSCs derived from iNOS(-/-) or IFNgammaR1(-/-) mice. Blockade of chemokine receptors also abolished the immunosuppression. Administration of wild-type MSCs, but not IFNgammaR1(-/-) or iNOS(-/-) MSCs, prevented graft-versus-host disease in mice, an effect reversed by anti-IFNgamma or iNOS inhibitors. Wild-type MSCs also inhibited delayed-type hypersensitivity, while iNOS(-/-) MSCs aggravated it. Therefore, proinflammatory cytokines are required to induce immunosuppression by MSCs through the concerted action of chemokines and NO.  相似文献   

5.
Soluble factors released by intra-cerebral activated cells are implicated in neuronal alterations during central nervous system inflammatory diseases. In this study, the role of the CD23 pathway in astrocyte activation and its participation in human immunodeficiency virus-1 (HIV-1)-induced neuropathology were evaluated. In human primary astrocytes, CD23 protein membrane expression was dose-dependently upregulated by gp120. It was also upregulated by gamma-interferon (gamma-IFN) and modulated by interleukin-1-beta (IL-1beta) whereas microglial cells in these stimulation conditions did not express CD23. Cell surface stimulation of CD23 expressed by astrocytes induced production of nitric oxide (NO) and IL-1beta which was inhibited by a specific inducible NO-synthase (iNOS) inhibitor (aminoguanidine), indicating the implication of this receptor in the astrocyte inflammatory reaction. On brain tissues from five out of five patients with HIV-1-related encephalitis, CD23 was expressed by astrocytes and by some microglial cells, whereas it was not detectable on brain tissue from five of five HIV-1-infected patients without central nervous system (CNS) disease or from two of two control subjects. In addition, CD23 antigen was co-localized with iNOS and nitrotyrosine on brain tissue from patients with HIV1-related encephalitis, suggesting that CD23 participates in iNOS activation of astrocytes in vivo. In conclusion, CD23 ligation is an alternative pathway in the induction of inflammatory product synthesis by astrocytes and participates in CNS inflammation.  相似文献   

6.
We have previously demonstrated that genetic ablation of cationic amino acid transporter 2 (Cat2) significantly inhibits nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in activated macrophages. Here we report that iNOS activity is impaired by 84% in activated Cat2-deficient astrocytes. Cat2 ablation appears to reduce astrocyte NO synthesis by decreasing the uptake of the sole precursor, arginine, as well as by reducing the expression of iNOS following activation. Excessive or dysregulated NO production by activated astrocytes and other CNS cell types has been implicated in the pathogenesis of neurological disorders. Our results support the idea that manipulation of CAT2 transporter function might be useful for the therapeutic modulation of iNOS activity.  相似文献   

7.
8.
Astrocyte activation has been implicated in the pathogenesis of many neurological diseases. These reactive astrocytes are capable of producing a variety of proinflammatory mediators and potentially neurotoxic compounds, such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1beta (IL-1beta). In this study, we examined the suppressive effects of Tetrandrine (TET) on astrocyte activation induced by lipopolysaccharide (LPS) in vitro. We found that TET decreased the release of NO, TNF-alpha, IL-6 and IL-1beta in LPS-activated astrocytes. Also mRNA expression levels of inducible nitric oxide synthase (iNOS), macrophage inflammatory protein-1alpha (MIP-1alpha) and vascular cell adhesion molecule-1 (VCAM-1) were inhibited in TET pretreated astrocytes. Such suppressive effects might be resulted from the inhibition of nuclear factor kappa B (NF-kappaB) activation through downregulating IkappaB kinases (IKKs) phosphoration, which decreased inhibitor of nuclear factor-kappaB-alpha (IkappaBalpha) phosphoration and degradation. Our results suggest that TET acted to regulate astrocyte activation through inhibiting IKKs-IkappaBalpha-NF-kappaB signaling pathway.  相似文献   

9.
10.
11.
Inhibition of pro-inflammatory functions of microglia has been considered a promising strategy to prevent pathogenic events in the central nervous system under neurodegenerative conditions. Here we examined potential inhibitory effects of nuclear receptor ligands on lipopolysaccharide (LPS)-induced inflammatory responses in microglial BV-2 cells. We demonstrate that a vitamin D receptor agonist 1,25-dihydroxyvitamin D3 (VD3) and a retinoid X receptor agonist HX630 affect LPS-induced expression of pro-inflammatory factors. Specifically, both VD3 and HX630 inhibited expression of mRNAs encoding inducible nitric oxide synthase (iNOS) and IL-6, whereas expression of IL-1β mRNA was inhibited only by VD3. The inhibitory effect of VD3 and HX630 on expression of iNOS and IL-6 mRNAs was additive. Effect of VD3 and HX630 was also observed for inhibition of iNOS protein expression and nitric oxide production. Moreover, VD3 and HX630 inhibited LPS-induced activation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor κB (NF-κB). PD98059, an inhibitor of ERK kinase, attenuated LPS-induced nuclear translocation of NF-κB and induction of mRNAs for iNOS, IL-1β and IL-6. These results indicate that VD3 can inhibit production of several pro-inflammatory molecules from microglia, and that suppression of ERK activation is at least in part involved in the anti-inflammatory effect of VD3.  相似文献   

12.
Zhang Y  Wang H  Ren J  Tang X  Jing Y  Xing D  Zhao G  Yao Z  Yang X  Bai H 《PloS one》2012,7(6):e39214
IFN-γ-mediated inducible nitric oxide synthase (iNOS) expression is critical for controlling chlamydial infection through microbicidal nitric oxide (NO) production. Interleukin-17A (IL-17A), as a new proinflammatory cytokine, has been shown to play a protective role in host defense against Chlamydia muridarum (Cm) infection. To define the related mechanism, we investigated, in the present study, the effect of IL-17A on IFN-γ induced iNOS expression and NO production during Cm infection in vitro and in vivo. Our data showed that IL-17A significantly enhanced IFN-γ-induced iNOS expression and NO production and inhibited Cm growth in Cm-infected murine lung epithelial (TC-1) cells. The synergistic effect of IL-17A and IFN-γ on Chlamydia clearance from TC-1 cells correlated with iNOS induction. Since one of the main antimicrobial mechanisms of activated macrophages is the release of NO, we also examined the inhibitory effect of IL-17A and IFN-γ on Cm growth in peritoneal macrophages. IL-17A (10 ng/ml) synergizes with IFN-γ (200 U/ml) in macrophages to inhibit Cm growth. This effect was largely reversed by aminoguanidine (AG), an iNOS inhibitor. Finally, neutralization of IL-17A in Cm infected mice resulted in reduced iNOS expression in the lung and higher Cm growth. Taken together, the results indicate that IL-17A and IFN-γ play a synergistic role in inhibiting chlamydial lung infection, at least partially through enhancing iNOS expression and NO production in epithelial cells and macrophages.  相似文献   

13.
14.
L-Arginine is converted to the highly reactive and unstable nitric oxide (NO) and L-citrulline by an enzyme named nitric oxide synthase (NOS). NO decomposes into other nitrogen oxides such as nitrite (NO(2) (-)) and nitrate (NO(2) (-)), and in the presence of superoxide anion to the potent oxidizing agent peroxynitrite (ONOO(-)). Activated rodent macrophages are capable of expressing an inducible form of this enzyme (iNOS) in response to appropriate stimuli, i.e., lipopolysaccharide (LPS) and interferon-gamma (IFNgamma). Other cytokines can modulate the induction of NO biosynthesis in macrophages. NO is a major effector molecule of the anti-microbial and cytotoxic activity of rodent macrophages against certain micro-organisms and tumour cells, respectively. The NO synthesizing pathway has been demonstrated in human monocytes and other cells, but its role in host defence seems to be accessory. A delicate functional balance between microbial stimuli, host-derived cytokines and hormones in the microenvironment regulates iNOS expression. This review will focus mainly on the known and proposed mechanisms of the regulation of iNOS induction, and on agents that can modulate NO release once the active enzyme has been expressed in the macrophage.  相似文献   

15.
Recent studies have shown that somatostatin (SOM) inhibits interleukin 6 (IL-6) and interferon gamma (IFNgamma) production by lymphocytes and peritoneal macrophages, whereas substance P (SP) enhances these cytokines production. To define the mechanism of the cytokine production enhancements and inhibitions by SOM and SP, we examined the expression of apoptosis modulator, p53, Bcl-2, Bax, inducible nitric oxide synthase (iNOS), Fas, caspase-8 and nitric oxide (NO) in thioglycolate-elicited peritoneal macrophages. SOM caused up-regulation of p53, Bcl-2, Fas and caspase-8 activities, and down-regulation of iNOS expression and NO production. On the other hand, SP slightly induces p53 and highly induces Bcl-2, iNOS expression and NO production. These data suggest that apoptosis by SOM may occur by a Bax- and NO-independent p53 accumulation, and through Fas and caspase-8 activation pathways, and that the inducible expression of Bcl-2 and NO production by SP may contribute to prevent the signals of apoptosis by Bax, and via Fas and caspase-8 activation.  相似文献   

16.
17.
iNOS expression inhibits hypoxia-inducible factor-1 activity   总被引:11,自引:0,他引:11  
Hypoxia-inducible factor-1 (HIF-1) activates genes important in vascular function such as vascular endothelial growth factor (VEGF), erythropoietin (EPO), and inducible nitric oxide synthase (iNOS). iNOS catalyzes the synthesis of nitric oxide (NO), a free radical gas that mediates a number of cellular processes, including regulation of gene expression, vasodilatation, and neurotransmission. Here we demonstrate that iNOS expression inhibits HIF-1 activity under hypoxia in C6 glioma cells transfected with an iNOS gene and a VEGF promoter-driven luciferase gene. HIF-1 induction of VEGF-luciferase activity in C6 cell is also inhibited by sodium nitroprusside (SNP). Furthermore, pretreatment of C6 cells with N-acetyl-l-cysteine (NAC), an antioxidant, nullified the inhibitory effect of iNOS on HIF-1 binding. These results demonstrate that NO generated by iNOS expression inhibits HIF-1 activity in hypoxic C6 cells and suggest a negative feedback loop in the HIF-1 --> iNOS cascade.  相似文献   

18.
Solvents, surfactants, cutting fluids, hydrocarbons, and oils cause skin irritation by incompletely understood mechanisms. This study examined histological and molecular changes in rodent skin caused by brief topical exposures to m-xylene. At 0, 1, 2, 4, and 6 h after 1-h exposure, skin samples were removed and analyzed for histopathological changes and interleukin-1 alpha (IL-1 alpha) and inducible nitric oxide synthase (iNOS) protein levels. Histopathological changes (epidermal-dermal separation and granulocyte infiltration) and increases in IL-1 alpha and iNOS protein expression occurred during our observation period. IL-1 alpha levels increased by 80% immediately after exposure and iNOS levels increased about 60% 4 hours after exposure. Our study demonstrates that dermal exposure to m-xylene promotes IL-1 alpha and iNOS production in skin and these proteins may serve as early indicators of skin irritation.  相似文献   

19.
Expression of inducible nitric oxide synthase (iNOS) and the resultant increased nitric oxide (NO) production are associated with septic shock, atherosclerosis, and cytokine-induced vascular injury. Estrogen is known to impact vascular injury and vascular tone, in part through regulation of NO production. In the current study, we examined the effect of physiological concentrations of estradiol on interleukin-1beta (IL-1beta)-induced NO production in rat aortic endothelial cells (RAECs). 17Beta-estradiol significantly decreased IL-1beta-induced iNOS protein levels and reduced NO production in RAECs. High glucose (25 mM) elevated the increase in IL-1beta-induced iNOS protein and NO production. Nevertheless, estradiol still inhibited IL-1beta-induced iNOS and NO production even in the presence of high glucose. These data suggest that estradiol may exert its beneficial effects in part by inhibiting induction of endothelial iNOS, a possible mechanism for the protective effect of estradiol against diabetes-associated cardiovascular complications.  相似文献   

20.
Activation of thromboxane receptors (TPr) may promote atherosclerosis by enhancing oxidative stress and inflammation. This study examined the role of Nox1, an NADPH-oxidase subunit, in the enhancement of interleukin (IL)-1β-induced monocyte adhesion by TPr. In cultured rat aortic vascular smooth muscle cells (VSMCs), U46619, a stable thromboxane A(2) mimetic, together with interleukin-1β significantly enhanced Nox1 mRNA expression, as well as adhesion of THP-1 monocytes. Activation of TPr also enhanced IL-1β-induced vascular cell adhesion molecule (VCAM)-1 expression, but inhibited inducible nitric oxide synthase (iNOS) expression. Silencing Nox1 expression by siRNA prevented the U46619 enhancement of IL-1β-induced monocyte adhesion, but had no significant effect on VCAM-1 or iNOS expression. Furthermore, monocyte adhesion was inhibited by superoxide dismutase, enhanced by a specific iNOS inhibitor, l-N(6)-(1-iminoethyl)-lysine, but not influenced by catalase. U46619 inhibited IL-1β-induced cyclic GMP production, and the inhibition was partially prevented by superoxide dismutase. In conclusion, activation of TPr enhances IL-1β-induced Nox1 expression in VSMCs, which is responsible for the up-regulation of monocyte adhesion. The effect of Nox1 is independent of the changes in VCAM-1 and iNOS expression, but depends on the inactivation of nitric oxide via generation of superoxide anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号