首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The community structure of mesozooplankton was investigated in Dolgaya Bay (southern Barents Sea), a subarctic fjord, using a Juday net (0.168-mm mesh size) in July, 2008. A total of 39 species and higher taxa were found. Average abundance, biomass and diversity (±standard error) were 153,403 ± 15,855 ind m−2, 570 ± 61 mg dry mass m−2, and 2.25 ± 0.09, respectively. Copepods were the most numerous species. The mesozooplankton communities were dominated by omnivores (Oithona similis and Acartia spp.). Vertical distribution of the mesozooplankton was characterized by copepod dominance at each sampled layer. There were no significant correlations among physical variables and biological parameters, except negative correlation for the mean biomass and mean water temperature.  相似文献   

2.
McKinnon  A. D.  Klumpp  D. W. 《Hydrobiologia》1997,362(1-3):145-160
Measurements of plankton community structure and trophic resourcespotentially available to planktonic copepods were made in the mangroveestuaries of six rivers in Northeastern Australia. The Pascoe, Claudie,Lockhart, McIvor and Daintree Rivers represent wet tropical systems on CapeYork, whereas the Haughton River estuary has restricted freshwater inflowbecause of a drier climate and freshwater diversion for agriculture. TheHaughton River was sampled approximately monthly between October 1992 andMay 1994, and had a mean abundance of zooplankton >37 μm of 200l−1 (range 60–500 l−1). The Cape Yorkrivers were sampled infrequently, and zooplankton abundances ranged between0.4 and 1400 l−1. The zooplankton of all rivers was dominatedby copepods, particularly representatives of the genus Oithona which werecharacteristic of a distinct mangrove fauna. Physical forcing influencedthe zooplankton of mangrove estuaries much more than the measured biologicalvariables. The water column was characterised by high concentrations ofparticulate matter, up to 3.3 mg l−1 C and 1.1 mgl−1 N, of low food quality (as indicated by the C:N ratio).Phytoplankton biomass (as chlorophyll a) in all six rivers was on averagefour-fold greater than in neighbouring coastal waters (1.1–12.6μg l−1), and 25% of this chlorophyll a wasderived from cells >10 μm, and thus potentially available tocopepods. The degree of mixing, determined by the combination of tidal stateand the extent of freshwater input, appears to drive both the quantity andquality of particulate material available to higher consumers and thedistribution of zooplankton communities within mangrove estuaries. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The structure of the zooplankton community in an estuary adjacent to the Admiral álvaro Alberto Nuclear Power Plant at Angra dos Reis, state of Rio de Janeiro, Brazil was studied from 2001 through 2005. At that time, the power plant had been operating for 20 years. The results were compared with a previous study in 1991–1993. The zooplankton was sampled 4 times a year, in vertical hauls using a 150 μm net, at two fixed points near the plant’s intake and discharge sites. Temperature, salinity, and chlorophyll a were measured. The water of Ribeira Bay is warm, with salinities typical of Coastal Water and more saline waters. Zooplankton density at the discharge site (Mean: 245,434 ind m−3, SD: 335,358 ind m−3) was higher than that at the intake site (Mean: 84,634 ind m−3, SD: 101,409 ind m−3). A total of 121 mesozooplankton taxa were recorded from 2001 to 2005. Copepoda constituted the most common taxon and comprised more than 57% of the total zooplankton, followed by cladocers and gastropod larvae. A seasonal zooplankton cycle was observed only during 2004; in other years, the plankton varied only between years. Overall mesozooplankton abundance at the discharge site was similar to levels reported from the inner zone of this estuary in 1991–1993. Surface temperature was the important factor structuring the zooplankton community at the discharge site. No effect on the mesozooplankton by passage through the condensers could be discerned, and no permanent negative influence on the plankton populations could be detected. Guest editors: U. M. Azeiteiro, I. Jenkinson & M. J. Pereira Plankton Studies  相似文献   

4.
Specific inherent optical properties (SIOP) of the Berau coastal waters were derived from in situ measurements and inversion of an ocean color model. Field measurements of water-leaving reflectance, total suspended matter (TSM), and chlorophyll a (Chl a) concentrations were carried out during the 2007 dry season. The highest values for SIOP were found in the turbid waters, decreasing in value when moving toward offshore waters. The specific backscattering coefficient of TSM varied by an order of magnitude and ranged from 0.003 m2 g−1, for clear open ocean waters, to 0.020 m2 g−1, for turbid waters. On the other hand, the specific absorption coefficient of Chl a was relatively constant over the whole study area and ranged from 0.022 m2 mg−1, for the turbid shallow estuary waters, to 0.027 m2 mg−1, for deeper shelf edge ocean waters. The spectral slope of colored dissolved organic matter light absorption was also derived with values ranging from 0.015 to 0.011 nm−1. These original derived values of SIOP in the Berau estuary form a corner stone for future estimation of TSM and Chl a concentration from remote sensing data in tropical equatorial waters.  相似文献   

5.
Zusammenfassung 1. Die Kotballen der planktischen CopepodenartenAcartia bifilosa, Centropages hamatus, Oithona similis undPseudocalanus elongatus werden in ihrer Form, Länge und Breite beschrieben.2. Die aus Länge, Breite und Grundform der Faeces berechneten durchschnittlichen Volumina liegen zwischen 13 × 103 µm3 für beide Geschlechter der ArtOithona similis und 348 × 103 µm3 für die Kotballen der Weibchen der ArtAcartia bifilosa.3. Die Dimensionen der Faeces der vier untersuchten Arten zeigen in mindestens einem der untersuchten Parameter signifikante Unterschiede. Im Falle der ArtenAcartia bifilosa undCentropages hamatus sind auch die Größen der Kotballen beider Geschlechter signifikant verschieden.4. Ein Vergleich von Labor- und Freilanduntersuchungen zeigt, daß die in sedimentiertem Seston gefundenen Faeces planktischer Copepoden sich mit Hilfe der experimentell gefundenen Charakteristika den dominierenden Arten zuordnen lassen.
Species-characteristics of the fecal pellets of four dominating copepod species of Kiel bight
Mean length, width and shape of the fecal pellets of the four planktonic copepod species,Acartia bifilosa, Centropages hamatus, Oithona similis andPseudocalanus elongatus, were studied. Mean volumes of the fecal pellets of the different species vary between 13 × 103 µm3 (males and females ofOithona similis) and 348 × 103 µm3 (females ofAcartia bifilosa). The dimensions of the fecal pellets of the four species examined reveal significant differences in at least one of the criteria studied. InAcartia bifilosa andCentropages hamatus even the length and width of the fecal pellets of the two sexes are different. With respect to the characteristics described, a comparison made between fecal pellets found in cultures with those obtained from sediment of the Baltic Sea (Kiel Bight) has shown that the latter may be attributed to the copepod species under consideration.
  相似文献   

6.
Early juvenile Japanese temperate bass Lateolabrax japonicus samples were collected during four cruises to study the spatial and temporal patterns of distribution and feeding habits of the fish in Chikugo estuary, Ariake Sea, Japan. Gut contents were studied by separating, identifying and counting the prey organisms. Plankton samples were collected during each cruise to study the numerical abundance of copepods in the water. Copepod dry biomass and gut content dry mass were estimated. Juveniles were distributed over wide estuarine areas in salinities ranging from as low as 0·37 to as high as 28·81. Considerable spatial and temporal variations were observed in the copepod distribution in the environment and in the food habits of the fish. Two distinctly different copepod assemblages were identified along the estuary: one in the upper river, dominated by a single species Sinocalanus sinensis, and the other a multi‐specific assemblage in the lower estuary dominated by common coastal copepods such as Acartia omorii, Oithona davisae, Paracalanus parvus and Calanus sinicus. The gut content composition corresponded strongly with the copepod composition in the environment, i.e. a single species (S. sinensis) dietary habit at the upper river and a multi‐specific dietary habit dominated by the common coastal copepods in the lower estuary. Ivlev's electivity index showed that the fish strongly preferred larger copepods and avoided smaller ones. Higher dry biomass of copepods in the water as well as higher dry masses of the gut contents were recorded in the low‐to‐medium saline upper river areas, indicating that these areas are of particular importance as nursery grounds for the juvenile Japanese temperate bass. It was speculated that ascending to the upstream nursery areas to utilize S. sinensis, which is the single dominant copepod in these areas, is one of the most important survival strategies of the Japanese temperate bass juveniles in the Chikugo estuary.  相似文献   

7.
Copepods are considered to be the main component of the Arctic marine zooplankton. We examined the copepod distribution and diversity off Franz Josef Land (northern Barents Sea) in August 2006 and 2007. A total of 18 and 14 copepod taxa were identified from the sampling layers (100–0 m or bottom–0 m) in 2006 and in 2007, respectively. There were no significant differences in the total copepod abundance between the years (means ± SE: 118,503 ± 24,115 individuals m−2 in 2006 vs. 113,932 ± 28,564 individuals m−2 in 2007). However, the copepod biomass in 2006 (4,518 ± 1,091 mg C m−2) exceeded clearly the value in 2007 (1,253 ± 217 mg C m−2). The copepod community showed low species richness and diversity in both years (Simpson index D: 0.34 and 0.38, respectively). Biomass of the large and small copepod species strongly decreased from 2006 to 2007. The total abundance of copepods was negatively correlated with water temperature in 2006 and positively correlated with salinity in 2007. The patchiness in copepod distribution was associated with local hydrography and temperature conditions.  相似文献   

8.
The present study aimed to investigate into the feeding ecology of the dominant copepods along a salinity gradient in Chikugo estuary. Copepod composition was studied from samples collected from stations positioned along the salinity gradient of the estuary. Copepod gut pigment concentrations were measured by fluorescence technique and hydrographical parameters such as temperature, salinity, transparency, suspended particulate matter (SPM); pigments such as chlorophyll-a (Chl-a), phaeopigment; and particulate nutrients such as particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured. Two distinct zones in terms of nutrient and pigment concentrations as well as copepod distribution and feeding were identified along the estuary. We identified a zone of turbidity maximum (TM) in the low saline upper estuary which was characterized by having higher SPM, higher POC and PON but lower POC:PON ratios, higher pigment concentrations but lower Chl-a/SPM ratios and higher copepod dry biomass. Sinocalanus sinensis was the single dominant copepod in low saline upper estuary where significantly higher concentrations of nutrients and pigments were recorded and a multispecies copepod assemblage dominated by common coastal copepods such as Acartia omorii, Oithona davisae and Paracalanus parvus was observed in the lower estuary where nutrient and pigment concentrations were lower. Copepods in the estuary are predominantly herbivorous, feeding primarily on pigment bearing plants. However, completely contrasting trophic environments were found in the upper and the lower estuary. It was speculated from the Chl-a and phaeopigment values that copepods in the upper estuary receive energy from a detritus-based food web while in the lower estuary an algal-based food web supports copepod growth. Overall, the upper estuary was identified to provide a better trophic environment for copepod and is associated with higher SPM concentrations and elevated turbidity. The study demonstrates the role of estuarine turbidity maximum (ETM) in habitat trophic richness for copepod feeding. The study points out the role of detritus-based food web as energy source for the endemic copepod S. sinensis in the upper estuary, which supports as nursery for many fish species.  相似文献   

9.
Zooplankton were collected by vertical tows with 102 µm mesh at ten stations in Boston Harbor, Massachusetts Bay and Cape Cod Bay in February, March, April, June, August, and October, 1992. This study was part of a larger monitoring program to assess the effects of a major sewage abatement project, and sampling periods were designed around periods of major phytoplankton events such as the winter-spring diatom bloom, the stratified summer flagellate period, and the autumn transition from stratified to mixed waters. There was considerable seasonal variation in total zooplankton abundance, with minimal values in April (1929–11631 animals m–3) during a massive bloom of Phaeocystis pouchetii, and maximum values (67 316–261075 animals m–3) in August. There were no consistent trends of total abundance where any particular station had greater or lesser abundance than others over the entire year. Zooplankton abundance was dominated by copepods (adults + copepodites) and copepod nauplii (30.4–100.0% of total zooplankton, mean= 83.2%). Despite the large seasonal variation in zooplankton and copepod abundance, the copepod assemblage was dominated throughout the entire year by the small copepod Oithona similis, followed by Paracalanus parvus. Other less-abundant copepods present year-round were Pseudocalanus newmani, Temora longicornis, Centropages hamatus, C. typicus, and Calanus finmarchicus. Two species of Acartia were present, primarily in low-salinity waters of Boston Harbor: A. hudsonica during cold periods, and A. tonsa in warm ones. Eurytemora herdmani was also a subdominant in Boston Harbor in October. The potential role of zooplankton grazing in phytoplankton dynamics and bloom cycles in these waters must be considered in view of the overwhelming numerical dominance of the zooplankton by Oithona similis which may feed primarily as a carnivore. Furthermore, it seems unlikely that eutrophication-induced alteration of phytoplankton assemblages could cause significant trophic domino effects, reducing abundances of Calanus finmarchicus that are forage of endangered right whales seasonally utilizing Cape Cod Bay because C. finmarchicus has long been known to be a relatively unselective grazer, and most importantly, it is a trivial component of total zooplankton or total copepod abundance in these waters.  相似文献   

10.
The number of common eiders (Somateria mollissima borealis) in west Greenland declined dramatically during the twentieth century, supposedly because of human activities. However, their sensitivity to alternative drivers of variation, such as climate conditions, diseases or food availability, remains unstudied. In this study, we describe prey availability and assess the trophic coupling between eiders and their macrobenthic prey in a shallow inlet, Nipisat Sound; a key wintering habitat in the south-west Greenland Open Water Area. Macrobenthic species abundance and biomass were studied, and annual production was estimated by an empirical model, including environmental characteristics, fauna composition and individual biomass. In spring 2008, average macrozoobenthic abundance and biomass were 6,912 ind m−2 and 28.4 g ash-free dry mass (AFDM) m−2 (647 kJ m−2), respectively. Annual production was estimated at 13.9 g AFDM m−2 year−1 (317 kJ m−2 year−1). During the winters of 2008–2010, we monitored the number of common eiders (S. mollissima borealis) and king eiders (Somateria spectabilis) and observed a distinct peak in abundance during winter with up to 15.000 birds in Nipisat Sound. Based on physiological costs of different activities in combination with the observed behavioural pattern, we obtained an estimate of the energy required for eiders to balance their costs of living, which amounted to 58% of the estimated total annual production of macrobenthos in Nipisat Sound. This result suggests that eider predation affects macrobenthic species composition and biomass and demonstrates the potential importance of variations in prey availability for the population dynamics of eiders in Greenland.  相似文献   

11.
Regional variations in mesozooplankton composition, abundance and biomass were studied during a cruise in August 2006 near Novaya Zemlya Archipelago (eastern Barents Sea) using Juday net hauls from the bottom (or 100 m depth) to the surface. A comparison with multiannual literature values revealed that the mean temperature and salinity in the south and centre of the study area were similar to typical values, while temperature in the north was significantly higher. A total of 36 species and higher taxa were identified. Mesozooplankton abundance and biomass varied from 47 to 851 ind m−3 and from 5 to 74 mg dry weight m−3, respectively. Copepods dominated the mesozooplankton community, reaching 73–98% and 61–97% of the total abundance and biomass. Calanus finmarchicus and Oithona similis were the most abundant species at all stations. The biodiversities (Shannon indices) of the mesozooplankton community varied between stations from 1.10 to 2.46 (estimated from species abundances) and from 0.19 to 1.92 (estimated from species biomasses), averaging 1.93 ± 0.127 and 1.34 ± 0.151, respectively. Three groups at the 48% level of dissimilarity of species abundance were delineated by cluster analyses. The clusters differed significantly with respect to temperature and salinity. The total mesozooplankton abundance and biomass as well as quantitative parameters of most common taxa scaled negatively with temperature.  相似文献   

12.
Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic–pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind. m−3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5–2.3 mg Chl-a m−3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind. m−2) and wet biomass (<0.2 g m−2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.  相似文献   

13.
Hoffmeyer  Mónica S. 《Hydrobiologia》1994,292(1):303-308
The abundance and species composition of Copepoda with respect to other mesozooplanktonic groups were studied at the harbour of Ingeniero White in the inner zone of the Bahfa Blanca estuary, between July 1990 and August 1991. Maximal copepod abundances of 4.7 × 10 m–3 and 4.9 × 10 m–3 were observed in January 1991 and May 1991, respectively. Minimal abundances of 6 m–3 were found in June 1990. Acartia tonsa was present throughout the year with high dominance in summer-autumn (December to May). Eurytemora affinis was present from July to October 1990 (first pulse) and from July to September 1991 (second pulse). Euterpina acutifrons was most abundant during spring 1990, whereas Paracalanus parvus was most abundant during winter-spring (July–October) 1990 and April–May 1991. The rest of the copepods were observed during winter and spring 1990 and July–August 1991. Calanoides carinatus and Labidocera fluviatilis, both species from the outer estuarine waters, were only found on two sampling dates. The proportion of meroplanktonic forms was high in certain months of the annual period considered. Differences between the copepod seasonal succession studied here and those observed during several years in the 1980's are discussed.  相似文献   

14.
Mesozooplankton biomass and abundance were evaluated in epipelagic waters at 59 stations covering the Italian sector of the Ligurian Sea (north-western Mediterranean) in December 1990. This region is characterised by a cyclonic circulation which encloses a central divergence zone and is associated with a main thermohaline front offshore the western Ligurian coast. At the end of autumn, mesozooplankton biomass (range: 0.80–4.24 mg DW m−3) and the abundance (range: 83.8–932 ind. m−3) were lower in the divergence zone. On the contrary, in the Ligurian frontal zone at the periphery of the divergence and on the eastern continental shelf the greatest values of biomass and abundance were recorded. Copepods and appendicularians dominated the mesozooplankton community, the main taxa being the copepods Clausocalanus spp. (46% of total zooplankton) and Oithona spp. (15%) and the appendicularian Fritillaria spp. (12%). Three hydrological sub-regions, i.e. the divergence, the eastern continental shelf and the periphery of the divergence, were characterised by different zooplankton communities and characteristic species. Environmental differences between the three zones were mainly related to changes in bottom topography, sea surface temperatures and quantity of particulate organic matter. Vertical mesozooplankton abundance and taxa distribution from the surface to 1,900 m depth were also examined in one station. The results showed that the bulk of the community was concentrated in the upper 200 m, small copepods being dominant particularly in the upper 50 m. The copepod community was more diversified in sub-superficial waters, with a maximum observed in the 200–400 m layer. The distributions of main zooplankton taxa described in epipelagic waters in the eastern Ligurian Sea in autumn were compared with their distribution at surface in the north-western Mediterranean obtained by sampling performed with the Continuous Plankton Recorder in 1997–1999. The analysis of the zooplankton community in CPR samples confirms the dominance of small copepods (Paracalanus spp., Clausocalanus spp., Oithona spp.) and appendicularians in the north-western Mediterranean in late autumn-winter and shows that their distribution is mainly related to the main mesoscale hydrographic features characterising this basin. Guest editors: S. Souissi & G. A. Boxshall Copepoda in the Mediterranean: Papers from the 9th International Conference on Copepoda, Hammamet, Tunisia  相似文献   

15.
Seasonal cycles of zooplankton from San Francisco Bay   总被引:5,自引:5,他引:0  
The two estuarine systems composing San Francisco Bay have distinct zooplankton communities and seasonal population dynamics. In the South Bay, a shallow lagoon-type estuary, the copepods Acartia spp. and Oithona davisae dominate. As in estuaries along the northeast coast of the U.S., there is a seasonal succession involving the replacement of a cold-season Acartia species (A. clausi s.l.) by a warm-season species (A. californiensis), presumably resulting from the differential production and hatching of dormant eggs. Oithona davisae is most abundant during the fall. Copepods of northern San Francisco Bay, a partially-mixed estuary of the Sacramento-San Joaquin Rivers, organize into discrete populations according to salinity distribution: Sinocalanus doerrii (a recently introduced species) at the riverine boundary, Eurytemora affinis in the oligohaline mixing zone, Acartia spp. in polyhaline waters (18–30\%), and neritic species (e.g., Paracalanus parvus) at the seaward boundary. Sinocalanus doerrii and E. affinis are present year-round. Acartia clausi s.l. is present almost year-round in the northern reach, and A. californiensis occurs only briefly there in summer-fall. The difference in succession of Acartia species between the two regions of San Francisco Bay may reflect differences in the seasonal temperature cycle (the South Bay warms earlier), and the perennial transport of A. clausi s.l. into the northern reach from the seaward boundary by nontidal advection.Large numbers (>106 m–3) of net microzooplankton (>64 µm), in cluding the rotifer Synchaeta sp. and three species of tintinnid ciliates, occur in the South Bay and in the seaward northern reach where salinity exceeds about 5–10 Maximum densities of these microzooplankton are associated with high concentrations of chlorophyll. Meroplankton (of gastropods, bivalves, barnacles, and polychaetes) constitute a large fraction of zooplankton biomass in the South Bay during winter-spring and in the northern reach during summer-fall.Seasonal cycles of zooplankton abundance appear to be constant among years (1978–1981) and are similar in the deep (>10 m) channels and lateral shoals (<3 m). The seasonal zooplankton community dynamics are discussed in relation to: (1) river discharge which alters salinity distribution and residence time of plankton; (2) temperature which induces production and hatching of dormant copepod eggs; (3) coastal hydrography which brings neritic copepods of different zoogeographic affinities into the bay; and (4) seasonal cycles of phytoplankton.  相似文献   

16.
Kane  J 《Journal of plankton research》1999,21(6):1043-1064
The annual cycle of abundance and the monthly distributions of the copepod Centropages typicus are described for US Northeast Continental Shelf waters from samples collected on broadscale plankton surveys during 1977-87. High numbers of the copepod were captured throughout the region during the autumn months in weak south-north and onshore-offshore abundance gradients. The highest individual station densities were found near the mouth of the major estuaries and the heaviest broad-scale concentrations were usually located where bottom depth ranged from 20 to 39 m. Numbers declined throughout the ecosystem after winter arrived, less so in the southern half of the region where C.typicus abundance remained high year round in nearshore and midshelf waters between New York City and Chesapeake Bay. The copepod's abundance fell to much lower levels further north in the Georges Bank and Gulf of Maine subareas, and disappeared entirely from shelf waters in the northernmost offshore region until summer. Interannual abundance variability was substantial, but no long-term trend was detected. Analyses of samples collected from 1988 to 1996 on Georges Bank during early autumn indicate that abundance levels of C.typicus have been high here in the 1990s, completely recovered from low density values measured there in 1986 and 1987. Temperature and food availability were found to be the key factors that determine the copepod's distribution and annual abundance cycle. Mean abundance was high throughout the ecosystem where surface temperature was >9C and in regions where annual mean chlorophyll levels exceeded 1 mg m-3. The copepod's abundance appeared to be independent from variation in water column salinity.   相似文献   

17.
We report on the first record of interstitial cnidarians in sea ice. Ice core samples were collected during eight field periods between February 2003 and June 2006 in the coastal fast ice off Barrow, Alaska (71°N, 156°W) at four locations. A total of 194 solitary, small (0.2–1.1 mm) elongated specimens of a previously unknown interstitial hydroid taxon were found. By cnidome composition and the occurrence of a highly retractable pedal disc formed by epidermal tissue only, the specimens are tentatively assigned to representatives of the family Protohydridae, subclass Anthomedusae. The hydroids were found almost exclusively in the bottom 10 cm-layer (at the ice–water interface) of 118 ice cores, with abundances ranging from 0 to 27 individuals per core section (0–4,244 ind m−2) and a grand mean of 269 ind m−2 in bottom 10 cm-layer sections. Abundances were lower in December and late May than in months in between with considerable site variability. A factor analysis using 12 variables showed that hydroid abundance correlated highest with abundances of copepod nauplii and polychaete juveniles suggesting a trophic relationship.  相似文献   

18.
Beaumont  K.L.  Plummer  A.J.  Hosie  G.W.  Ritz  D.A. 《Hydrobiologia》2001,(1):55-65
The abundance of small faecal pellets is high in marine waters. Little is known, however, about the processes governing their production and fate in the water column. We investigated faecal pellet production and flux in relation to the phytoplankton and copepod assemblages present in Ellis Fjord, Antarctica. Results show that the phytoplankton community shifted from a dominance of diatoms to that of a cryptomonad species during late January. This coincided with an increase in abundance of the small copepods Paralabidocera antarctica and Oithona similis, although Oncaea curvata was still the dominant species. The mean faecal pellet flux was 9943 pellets m–2 d–1. Only 37% of the faecal pellet flux at 5 m sedimented to 10 m depth, 15% to 20 m, and 12% to 40 m depth. Our results suggest that recycling of faecal pellets by copepods contributes to this decreased flux with increasing depth, which concurs with results from large scale oceanic studies. Additionally, we propose that the summer ice melt changes the physical characteristics of the water column and the phytoplankton species abundance and distribution; both of which potentially impact on the distribution and abundance of copepods, thereby regulating faecal pellet flux.  相似文献   

19.
In the mesohaline zone of the Westerschelde estuaryEurytemora affinis is the dominant copepod, demonstrating large biomass values nearly throughout the year. In the meso-polyhaline Lake VeereAcartia tonsa is abundant, mainly during summer. In spring a small population ofEurytemora americana is found. The tidal estuary harboured far denser copepod populations throughout the year than the stagnant brackish lake water. The average yearly copepodid+adult biomass in the Westerschelde estuary was approx. 850 mg/m3 (wet weight), in Lake Veere approx. 130 mg/m3. Temporarily low oxygen values did not influence negatively the copepod populations in the Westerschelde estuary. The seasonal distribution of the dominant copepods in both areas is explained in the light of recent litterature data. PerennialEurytemora affinis abundance in the Westerschelde estuary must be mainly caused by large concentrations of nannodetritus particles, bacteria included, throughout the year.Acartia tonsa in Lake Veere has to thrive mainly on nannophytoplankton. Communication no. 141 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherland.  相似文献   

20.
The relative importance of small forms of copepods has been historically underestimated by the traditional use of 200?C300-??m mesh nets. This work quantified the distribution and abundance of copepods, considering two size fractions (<300???m and >300???m), in superficial waters (9?m deep) of the Drake Passage and contributed to the knowledge of their interannual fluctuations among three summers. Four types of nauplii and eleven species of copepods at copepodite and adult stages were identified, with abundance values of up to 13 ind L?1 and 28,300???g C m?3. The <300-??m fraction, composed of Oithona similis, small cyclopoids and nauplii, dominated the copepod communities in the 3?years; it accounted for more than 77% of the total number and for between 40 and 63% of the total biomass. Changes in density and biomass values among the three cruises differed according to copepod size fraction and water mass; the >300-??m fraction showed no changes among the 3?years, both in Antarctic (density and biomass) and in Subantarctic waters (density), whereas the <300-??m fraction showed higher (density and biomass) values in 2001 both in Subantarctic and in Antarctic waters. Sea surface temperature and its anomaly accounted for the largest proportion of variability in copepod density and biomass, particularly for the <300-??m fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号