首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundCurrently marketed chondroitin sulfate isolated from animal sources and structurally quite heterogeneous. Synthesis of structurally defined chondroitin sulfate is highly desired. The capsular polysaccharide from Escherichia coli strain K4 is similar to chondroitin, and its biosynthesis requires a chondroitin polymerase (KfoC). The essential step toward de novo enzymatic synthesis of chondroitin sulfate, synthesis of chondroitin, could be achieved by employing this enzyme.MethodsStructurally defined acceptors and donor-sugars were prepared by chemoenzymatic approaches. In addition, surface plasmon resonance was employed to determine the binding affinities of individual substrates and donor–acceptor pairs for KfoC.ResultsKfoC has broad donor substrate specificity and acceptor promiscuity, making it an attractive tool enzyme for use in structurally-defined chimeric glycosaminoglycan oligosaccharide synthesis in vitro. In addition, the binding of donor substrate molecules regulated the affinity of KfoC for acceptors, then influenced the glycosyl transferase reaction catalyzed by this chondroitin polymerase.Conclusion and general significanceThese results assist in the development of enzymatic synthesis approaches toward chimeric glycosaminoglycan oligosaccharides and designing future strategies for directed evolution of KfoC in order to create mutants toward user-defined goals.  相似文献   

2.
Transposons are developing molecular tools commonly used for several applications: one of these is the delivery of genes into microorganisms. These mobile genetic elements are characterised by two repeated insertion sequences that flank a sequence encoding one or more orfs for a specific transposase that moves these sequences to other DNA sites. In the present paper, the IS2 transposon of Escherichia coli K4 was modified in vitro by replacing the sequence coding for the transposase with that of the kfoC gene that codes for chondroitin polymerase. KfoC is responsible for the polymerisation of the bacterial capsular polysaccharide whose structure is analogous to that of chondroitin sulphate, a glycosaminoglycan with established and emerging biomedical applications. The recombinant construct was stably integrated into the genome of E. coli K4 by exploiting the transposase from endogenous copies of IS2 in the E. coli chromosome. A significant improvement of the polysaccharide production was observed, resulting in 80 % higher titres in 2.5-L fed-batch cultivations and up to 3.5 g/L in 22-L fed-batch cultures.  相似文献   

3.
Escherichia coli strain K4 produces the K4 antigen, a capsule polysaccharide consisting of a chondroitin backbone (GlcUA beta(1-3)-GalNAc beta(1-4))(n) to which beta-fructose is linked at position C-3 of the GlcUA residue. We molecularly cloned region 2 of the K4 capsular gene cluster essential for biosynthesis of the polysaccharide, and we further identified a gene encoding a bifunctional glycosyltransferase that polymerizes the chondroitin backbone. The enzyme, containing two conserved glycosyltransferase sites, showed 59 and 61% identity at the amino acid level to class 2 hyaluronan synthase and chondroitin synthase from Pasteurella multocida, respectively. The soluble enzyme expressed in a bacterial expression system transferred GalNAc and GlcUA residues alternately, and polymerized the chondroitin chain up to a molecular mass of 20 kDa when chondroitin sulfate hexasaccharide was used as an acceptor. The enzyme exhibited apparent K(m) values for UDP-GlcUA and UDP-GalNAc of 3.44 and 31.6 microm, respectively, and absolutely required acceptors of chondroitin sulfate polymers and oligosaccharides at least longer than a tetrasaccharide. In addition, chondroitin polymers and oligosaccharides and hyaluronan polymers and oligosaccharides served as acceptors for chondroitin polymerization, but dermatan sulfate and heparin did not. These results may lead to elucidation of the mechanism for chondroitin chain synthesis in both microorganisms and mammals.  相似文献   

4.
5.

Background  

The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS) whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the scarceness of raw material, makes this productive process unsafe and unable to satisfy the growing market demand. In previous studies a new biotechnological process to produce chondroitin from Escherichia coli K4 capsular polysaccharide was investigated and a 1.4 g·L-1 K4 CPS concentration was reached using fed-batch fermentation techniques. In this work, on the trail of these results, we exploited new fermentation strategies to further improve the capsular polysaccharide production.  相似文献   

6.
Summary Transposon and deletion analysis of the cloned K1 capsule biosynthesis genes of Escherichia coli revealed that approximately 17 kb of DNA, split into three functional regions, is required for capsule production. One block (region 1) is required for translocation of polysaccharide to the cell surface and mutations in this region result in the intracellular appearance of polymer indistinguishable on immunoelectrophoresis to that found on the surface of K1 encapsulated bacteria. This material was released from the cell by osmotic shock indicating that the polysaccharide was probably present in the periplasmic space. Insertions in a second block (region 2) completely abolished polymer production and this second region is believed to encode the enzymes for the biosynthesis and polymerisation of the K1 antigen. Addition of exogenous N-acetylneuraminic acid to one insertion mutant in this region restored its ability to express surface polymer as judged by K1 phage sensitivity. This insertion probably defines genes involved in biosynthesis of N-acetylneuraminic acid. Insertions in a third block (region 3) result in the intracellular appearance of polysaccharide with a very low electrophoretic mobility. The presence of the cloned K1 capsule biosynthesis genes on a multicopy plasmid in an E. coli K-12 strain did not increase the yields of capsular polysaccharide produced compared to the K1+ isolate from which the genes were cloned.  相似文献   

7.
Within the capsule gene complex (cps) of Neisseria meningitidis two functional regions B and C are involved in surface translocation of the cytoplasmically synthesized capsular polysaccharide, which is a homopolymer of α-2,8 polyneuraminic acid. The region-C gene products share characteristics with transporter proteins of the ABC (ATP-binding cassette) superfamily of active transporters. For analysis of the role of region B in surface translocation of the capsular polysaccharide we purified the polysaccharides of region B- and region C-defective Escherichia coli clones by affinity chromatography. The molecular weights of the polysaccharides were determined by gel filtration and the polysaccharides were analysed for phospholipid substitution by polyacrylamide gel electrophoresis and immunoblotting. The results indicate that the full-size capsular polysaccharide with a phospholipid anchor is synthesized intracellularly and that lipid modification is a strong requirement for translocation of the poly saccharide to the cell surface. Proteins encoded by region B are involved in phospholipid substitution of the capsular polysaccharide. Nucleotide sequence analysis of region B revealed two open reading frames, which encode proteins with molecular masses of 45.1 and 48.7 kDa.  相似文献   

8.
The rfbO9 gene cluster, which is responsible for the synthesis of the lipopolysaccharide O9 antigen, was cloned from Escherichia coli O9:K30. The gnd gene, encoding 6-phosphogluconate dehydrogenase, was identified adjacent to the rfbO9 cluster, and by DNA sequence analysis the gene order gnd-rfbM-rfbK was established. This order differs from that described for other members of the family Enterobacteriaceae. Nucleotide sequence analysis was used to identify the rfbK and rfbM genes, encoding phosphomannomutase and GDP-mannose pyrophosphorylase, respectively. In members of the family Enterobacteriaceae, these enzymes act sequentially to form GDP-mannose, which serves as the activated sugar nucleotide precursor for mannose residues in cell surface polysaccharides. In the E. coli O9:K30 strain, a duplicated rfbM2-rfbK2 region was detected approximately 3 kbp downstream of rfbM1-rfbK1 and adjacent to the remaining genes of the rfbO9 cluster. The rfbM isogenes differed in upstream flanking DNA but were otherwise highly conserved. In contrast, the rfbK isogenes differed in downstream flanking DNA and in 3'-terminal regions, resulting in slight differences in the sizes of the predicted RfbK proteins. RfbMO9 and RfbKO9 are most closely related to CpsB and CpsG, respectively. These are isozymes of GDP-mannose pyrophosphorylase and phosphomannomutase, respectively, which are thought to be involved in the biosynthesis of the slime polysaccharide colanic acid in E. coli K-12 and Salmonella enterica serovar Typhimurium. An E. coli O-:K30 mutant, strain CWG44, lacks rfbM2-rfbK2 and has adjacent essential rfbO9 sequences deleted. The remaining chromosomal genes are therefore sufficient for GDP-mannose formation and K30 capsular polysaccharide synthesis. A mutant of E. coli CWG44, strain CWG152, was found to lack GDP-mannose pyrophosphorylase and lost the ability to synthesize K30 capsular polysaccharide. Wild-type capsular polysaccharide could be restored in CWG152, by transformation with plasmids containing either rfbM1 or rfbM2. Introduction of a complete rfbO9 gene cluster into CWG152 restored synthesis of both O9 and K30 polysaccharides. Consequently, rfbM is sufficient for the biosynthesis of GDP-mannose for both O antigen and capsular polysaccharide E. coli O9:K30. Analysis of a collection of serotype O8 and O9 isolates by Southern hybridization and PCR amplification experiments demonstrated extensive polymorphism in the rfbM-rfbK region.  相似文献   

9.
Abstract The genes directing the expression of group II capsules in Escherichia coli are organized into three regions. The central region 2 is type specific and thought to determine the synthesis of the respective polysaccharide, whilst the flanking regions 1 and 3 are common to all group II gene clusters and direct the surface expression of the capsular polysaccharide. In this communication we analyze the involvement of region 1 and 3 genes in the synthesis of the capsular KS polysaccharide. Recombinant E. coli strains harboring all KS specific region 2 genes and having various combinations of region 1 and 3 gene were studied using immunoelectron microscopy. Membranes from these bacteria were incubated with UDP[14C]GlcA and UDPG1cNAc in the absence or presence of KS polysaccharide as an exogenous acceptor. It was found that recombinant strains with only gene region 2 did not produce the K5 polysaccharide. Membranes of such strains did not synthesize the polymer and did not elongate K5 polysaccharide added as an exogenous acceptor. An involvement of genes from region 1 (notably kps C and kps S) and from region 3 (notably kps T) in the K5 polysaccharide synthesis was apparent and is discussed.  相似文献   

10.
L Pike  R D Humphrey  O Wyss 《Life sciences》1974,15(9):1657-1664
Enzymic degradation of Azotobacter capsular polysaccharide by the depolymerases from azotophage lysates of A. vinelandii, and from a strain of A. chroococcum was examined. The molecular size of the capsular polysaccharide was examined by molecular sieve chromatography both before and after exposure to the capsule depolymerase. The depolymerase appears to attack the polysaccharide substrate in a random fashion which results in polysaccharide fragments of a random size distribution. The ester linkages and hexuronic acids were proportionally the same in all fractions before degradation, but ester linkages were absent from the smaller polysaccharide molecules after enzyme action. The ester linkages were not the substrate bonds broken by the enzyme, but, in the case of some azotophage enzymes, they appeared to play a role in enzyme activity, possibly as recognition sites.  相似文献   

11.
Summary The cosmid clone. pIJ3020 containing DNA from the plant pathogenic bacterium Xanthomonas campestris pathovar campestris has previously been shown to complement a non-pathogenic mutant defective in synthesis of extracellular enzymes. The DNA cloned in pIJ3020 was analysed by mutagenesis with Tn5 and Tn5lac and by nucleotide sequencing. The results indicate that this region of the genome contains a cluster of genes, mutation in any of which results in failure of the enzymes and extracellular polysaccharide to be synthesized. The designation rpf (regulation of pathogenicity factors) is proposed for these genes. The nucleotide sequence of one gene (rpfC) predicts a protein product with homology to conserved domains of both sensor and regulator proteins of prokaryotic two-component regulatory systems, which are usually involved in regulating gene expression in response to environmental stimuli.  相似文献   

12.
The extracellular polysaccharide capsules of Pasteurella multocida types A, D, and F are composed of hyaluronan, N-acetylheparosan (heparosan or unsulfated, unepimerized heparin), and unsulfated chondroitin, respectively. Previously, a type D heparosan synthase, a glycosyltransferase that forms the repeating disaccharide heparosan backbone, was identified. Here, a approximately 73% identical gene product that is encoded outside of the capsule biosynthesis locus was also shown to be a functional heparosan synthase. Unlike PmHS1, the PmHS2 enzyme was not stimulated greatly by the addition of an exogenous polymer acceptor and yielded smaller- molecular-weight-product size distributions. Virtually identical hssB genes are found in most type A, D, and F isolates. The occurrence of multiple polysaccharide synthases in a single strain invokes the potential for capsular variation.  相似文献   

13.
Summary In order to demonstrate that a cluster of five his genes (eight cistrons) on the circular chromosome of S. coelicolor is an operon, a constitutive mutant was characterized biochemically, and some aspects of enzyme repression were studied.The specific activities of three enzymes, two of which coded by genes of the his cluster and one specified by a his gene located far from the his cluster, were tested under different repression and derepression conditions and at various times of grwoth in a constitutive his mutant, in two leaky his mutants and in the wild type strains of S. coelicolor.The results of such investigations demonstrate that the constitutive mutant is derepressed exclusively for the synthesis of enzymes coded by genes of the his cluster; moreover only the synthesis of such enzymes takes place in a strictly coordinate way, suggesting that the his cluster behaves as a single unit of expression and regulation.  相似文献   

14.
The production of industrially relevant microbial polysaccharides has recently gained much interest. The capsular polysaccharide of Escherichia coli K4 is almost identical to chondroitin, a commercially valuable biopolymer that is so far obtained from animal tissues entailing complex and expensive extraction procedures. In the present study, the production of capsular polysaccharide by E. coli K4 was investigated taking into consideration a potential industrial application. Strain physiology was first characterized in shake flask experiments to determine the optimal culture conditions for the growth of the microorganism and correlate it to polysaccharide production. Results show that the concentration of carbon source greatly affects polysaccharide production, while the complex nitrogen source is mainly responsible for the build up of biomass. Small-scale batch processes were performed to further evaluate the effect of the initial carbon source concentration and of growth temperatures on polysaccharide production, finally leading to the establishment of the medium to use in following fermentation experiments on a bigger scale. The fed-batch strategy next developed on a 2-L reactor resulted in a maximum cell density of 56 gcww/L and a titre of capsular polysaccharide equal to 1.4 g/L, approximately ten- and fivefold higher than results obtained in shake flask and 2-L batch experiments, respectively. The release kinetics of K4 polysaccharide into the medium were also explored to gain insight into the mechanisms underlying a complex aspect of the strain physiology.  相似文献   

15.
We have isolated the capsular polysaccharide from the strain ofShigella dysenteriae type 1 8337. The product was purified by ultracentrifugation, treated with enzymes (proteinase K, DNA-RNAase) and analyzed by immunochemical methods. Polyclonal antibodies were obtained from rabbits immunized by whole cell antigens prepared fromShigella by ultrasonic treatment and by purified capsular polysaccharide. Crossed immunoelectrophoresis, PAGE and Western blot analysis showed that this product containing mainly the polysaccharide component also contained glycoprotein and lipopolysaccharide. Double diffusion in agarose gel confirmed that the capsular preparation contained at least three antigens reacting with rabbit polyclonal antiserum.  相似文献   

16.
Pseudomonas aeruginosa is capable of producing various cell-surface polysaccharides including alginate, A-band and B-band lipopolysaccharides (LPS). The D -mannuronic acid residues of alginate and the D -rhamnose (D -Rha) residues of A-band polysaccharide are both derived from the common sugar nucleotide precursor GDP-D -mannose (D -Man). Three genes, rmd, gmd and wbpW, which encode proteins involved in the synthesis of GDP-D -Rha, have been localized to the 5′ end of the A-band gene cluster. In this study, WbpW was found to be homologous to phosphomannose isomerases (PMIs) and GDP-mannose pyrophosphorylases (GMPs) involved in GDP-D -Man biosynthesis. To confirm the enzymatic activity of WbpW, Escherichia coli PMI and GMP mutants deficient in the K30 capsule were complemented with wbpW, and restoration of K30 capsule production was observed. This indicates that WbpW, like AlgA, is a bifunctional enzyme that possesses both PMI and GMP activities for the synthesis of GDP-D -Man. No gene encoding a phosphomannose mutase (PMM) enzyme could be identified within the A-band gene cluster. This suggests that the PMM activity of AlgC may be essential for synthesis of the precursor pool of GDP-D -Man, which is converted to GDP-D -Rha for A-band synthesis. Gmd, a previously reported A-band enzyme, and Rmd are predicted to perform the two-step conversion of GDP-D -Man to GDP-D -Rha. Chromosomal mutants were generated in both rmd and wbpW. The Rmd mutants do not produce A-band LPS, while the WbpW mutants synthesize very low amounts of A band after 18 h of growth. The latter observation was thought to result from the presence of the functional homologue AlgA, which may compensate for the WbpW deficiency in these mutants. Thus, WbpW AlgA double mutants were constructed. These mutants also produced low levels of A-band LPS. A search of the PAO1 genome sequence identified a second AlgA homologue, designated ORF488, which may be responsible for the synthesis of GDP-D -Man in the absence of WbpW and AlgA. Polymerase chain reaction (PCR) amplification and sequence analysis of this region reveals three open reading frames (ORFs), orf477, orf488 and orf303, arranged as an operon. ORF477 is homologous to initiating enzymes that transfer glucose 1-phosphate onto undecaprenol phosphate (Und-P), while ORF303 is homologous to L -rhamnosyltransferases involved in polysaccharide assembly. Chromosomal mapping using pulsed field gel electrophoresis (PFGE) and Southern hybridization places orf477, orf488 and orf303 between 0.3 and 0.9 min on the 75 min map of PAO1, giving it a map location distinct from that of previously described polysaccharide genes. This region may represent a unique locus within P. aeruginosa responsible for the synthesis of another polysaccharide molecule.  相似文献   

17.
Summary Two previously demonstrated linkage groups containing genes with catabolic function inPseudomonas putida have been shown to cotransduce with a third cluster of catabolic genes, namely those specifying enzymes of nicotinic acid dissimilation. Thus enzymes of the following dissimilatory pathways are coded by genes clustered in one small (10-15% of the chromosome) genetic region:p-hydroxy-benzoic, quinic, shikimic, benzoic, mandelic, phenylacetic, and nicotinic acids; and histidine, tyrosine and phenylalanine. We propose that this clustering is a consequence of the selection, in natural populations of bacteria, of gene arrangements which permit simultaneous transfer of the genetic determinants of a variety of dissimilatory pathways.  相似文献   

18.
The capsular K5 polysaccharide, a representative of group II capsular antigens of Escherichia coli, has been cloned previously, and three gene regions responsible for polymerization and surface expression have been defined (I. S. Roberts, R. Mountford, R. Hodge, K. B. Jann, and G. J. Boulnois, J. Bacteriol. 170:1305-1310, 1988). In this report, we describe the immunoelectron microscopic analysis of recombinant bacteria expressing the K5 antigen and of mutants defective in either region 1 or region 3 gene functions, as well as the biochemical analysis of the K5 capsular polysaccharide. Whereas the K5 clone expressed the K5 polysaccharide as a well-developed capsule in about 25% of its population, no capsule was observed in whole mount preparations and ultrathin sections of the expression mutants. Immunogold labeling of sections from the region 3 mutant revealed the capsular K5 polysaccharide in the cytoplasm. With the region 1 mutant, the capsular polysaccharide appeared associated with the cell membrane, and, unlike the region 3 mutant polysaccharide, the capsular polysaccharide could be detected in the periplasm after plasmolysis of the bacteria. Polysaccharides were isolated from the homogenized mutants with cetyltrimethylammonium bromide. The polysaccharide from the region 1 mutant had the same size as that isolated from the capsule of the original K5 clone, and both polysaccharides were substituted with phosphatidic acid. The polysaccharide from the region 3 mutant was smaller and was not substituted with phosphatidic acid. These results prompt us to postulate that gene region 3 products are involved in the translocation of the capsular polysaccharide across the cytoplasmic membrane and that region 1 directs the transport of the lipid-substituted capsular polysaccharide through the periplasm and across the outer membrane.  相似文献   

19.
Abstract In Escherichia coli with group II capsules, the synthesis of capsular polysaccharide and its cellular expression are encoded by the kps gene cluster, which is composed of three regions. The central region 2 encodes proteins involved in polysaccharide synthesis, and the flanking regions 1 and 3 direct the translocation of the finished polysaccharide across the cytoplasmic membrane and its surface expression. The kps genes of E. coli with the group II capsular K5 polysaccharide, have been cloned and sequenced. Region 1 contains the kps E, D, U, C and S genes. In this communication we describe the overexpression of the kps D and kps U genes as well as the isolation of the KpsU protein from the recombinant bacteria by chloroform treatment. The purified KpsU protein exhibited CMP-Kdo-synthetase activity. The N-terminal sequence and two internal peptide sequences of the isolated protein are in agreement with that previously predicted from the DNA sequence of the kps U gene. The kinetic data of the CMP-Kdo-synthetase participating in K5 capsule expression (K-CMP-Kdo-synthetase) differ from those described for the CMP-Kdo-synthetase, participating in lipopolysaccharide synthesis (L-CMP-Kdo-synthetase).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号