首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellulase complex of Neurospora crassa: activity, stability and release   总被引:2,自引:0,他引:2  
The temperature and pH optima, and the temperature and pH stability, of crude and purified enzymes of the cellulase complex of the cellulolytic ascomycete fungus Neurospora crassa were investigated. The effects of some non-ionic surfactants and fatty acids on the production/release of enzymes of cellulase complex were also examined. For the different enzymes of the complex, activity maxima occurred between pH 4.0 and 7.0, with pH 5.0 being close to optimal for stability of all. Temperature optima for activity ranged between 45 and 65 degrees C, with the stability optimum between 45 and 50 degrees C. The presence of C18 fatty acids and surfactants resulted in increased production of both endoglucanase and exoglucanase in the medium. Oleic acid was the most effective fatty acid tested, and Tween 80 the most effective surfactant. Oleic acid had no detectable effect on production of beta-glucosidase, and Tween 80 actually reduced its production.  相似文献   

2.
Effect of surfactants on cellulase production by Nectria catalinensis   总被引:1,自引:0,他引:1  
The effect of different nonionic surfactants (Tween 80, Tween 20, Triton X-100) and polyethylene glycol (PEG 6000) was tested on cellulolytic enzyme system production. Tween 80 gave the highest yield of endoglucanase, exoglucanase, and cellobiase at the 20th day of growth, presumably by causing increased permeability of cell membranes and/or by promoting the release of cell-bound enzymes. Maximal yield of endoglucanase was achieved with 1.7 mM Tween 80, whereas exoglucanase and cellobiase were at 0.85 mM. In the same way, this compound increased fungal growth. On the other hand, Tween 20 and Triton X-100 inhibited growth and cellulolytic enzyme production. High yields of endoglucanase and exoglucanase were achieved with PEG 6000 in comparison with the control, presumably by increasing enzyme stability. Received: 22 January 1996 / Accepted: 28 March 1996  相似文献   

3.
Characteristics of the cellulolytic system of the anaerobic fungus Piromyces sp. strain E2 with respect to adsorption onto microcrystalline cellulose were examined. Cellulolytic enzymes were separated by gel filtration chromatography into a high-molecular-mass complex with an apparent mass of approximately 1,200 to 1,400 kDa and proteins of lower molecular weights. Adsorption of cellulolytic enzymes was not only very fast (within 2 min, equilibrium was attained) but also very effective: Avicelase, endoglucanase, and beta-glucosidase activities from the high-molecular-mass complex were almost completely removed by Avicel. Adsorption of these enzyme activities was proportional and appeared to obey the Langmuir isotherm. For Avicelase, endoglucanase, and beta-glucosidase activities, the maximum amounts adsorbed (Amax) and apparent adsorption constants (Kad) were 16.8, 600, and 33.5 IU/g and 284, 6.93 and 126 ml/IU, respectively. The results of this study strongly support the existence of a multiprotein enzyme complex. This complex was found not to be specifically associated with cell wall fragments as judged by chitin determination.  相似文献   

4.
Thanatephorus cucumeris is a ubiquitous fungus responsible for many types of plant diseases worldwide. All isolates from infected Hevea brasiliensis trees secreted pectolytic enzymes; polygalacturonase (PG), pectin lyase (PL) and cellulolytic enzymes; beta-glucosidase and cellobiase in culture. The extracts of the rubber tree leaf tissues, inoculated with T. cucumeris did not show any PG activity. However, PL activity was detected in tissue with the establishment of the infection. The levels of beta-glucosidase, an inherent enzyme in Hevea spp. increased rapidly following infection. However, cellobiase was detected only with the initiation of infection. Molecular weights of PG in all isolates were similar and in the range of 53,000 to 58,000. PL also followed the same pattern showing a molecular weight around 39,000.  相似文献   

5.
This study reports the production of xylanolytic and cellulolytic enzymes by a thermophilic fungal isolate Myceliophthora sp. using a cheap medium containing rice straw and chemically defined basal medium under solid-state culture. A combination of one factor at a time approach followed by response surface methodology using Box-Behnken design of experiments resulted in 2.5, 1.25, 1.28 and 4.23 fold increase in xylanase, endoglucanase, beta-glucosidase and FPase activity, respectively. The zymograms developed against IEF gels showed that multiple isoforms of xylanase (5), endoglucanase (4) and beta-glucosidase (2) were produced under optimized culture conditions. Moreover, thiol containing serine proteases produced during the growth of the culture had no role in the post-translational modification of these xylanases.  相似文献   

6.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on alpha-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus beta-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of alpha-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of beta-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying beta-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

7.
The complete hydrolysis of cellulose requires a number of different enzymes including endoglucanase, exoglucanase and beta-glucosidase. These enzymes function in concert as part of a 'cellulase'complex called a cellulosome. In order (i) to develop a better understanding of the biochemical nature of the cellulase complex as well as the genetic regulation of its integral components and (ii) to utilize cellulases either as purified enzymes or as part of an engineered organism for a variety of purposes, researchers have, as a first step, used recombinant DNA technology to isolate the genes for these enzymes from a variety of organisms. This review provides some perspective on the current status of the isolation, characterization and manipulation of cellulase genes and specifically discusses (i) strategies for the isolation of endoglucanase, exoglucanase and beta-glucosidase genes; (ii) DNA sequence characterization of the cellulase genes and their accompanying regulatory elements; (iii) the expression of cellulase genes in heterologous host organisms and (iv) some of the proposed uses for isolated cellulase genes.  相似文献   

8.
Saratale GD  Oh SE 《Biodegradation》2011,22(5):905-919
A novel cellulolytic bacterium was isolated from the forest soil of KNU University campus. Through 16S rRNA sequence matching and morphological observation it was identified as Nocardiopsis sp. KNU. This strain can utilize a broad range of cellulosic substrates including: carboxymethyl cellulose (CMC), avicel, xylan, cellobiose, filter paper and rice straw by producing a large amount of thermoalkalotolerant endoglucanase, exoglucanase, xylanase and glucoamylase. Optimal culture conditions (Dubos medium, 37°C, pH 6.5 and static condition) for the maximal production of the cellulolytic enzymes were determined. The activity of cellulolytic and hemicelluloytic enzymes produced by this strain was mainly present extracellularly and the enzyme production was dependent on the cellulosic substrates used for the growth. Effect of physicochemical conditions and metal additives on the cellulolytic enzymes production were systematically investigated. The cellulases produced by Nocardiopsis sp. KNU have an optimal temperature of 40°C and pH of 5.0. These cellulases also have high thermotolerance as evidenced by retaining 55–70% activity at 80°C and pH of 5.0 and alkalotolerance by retaining >55% of the activity at pH 10 and 40°C after 1 h. The efficiency of fermentative conversion of the hydrolyzed rice straw by Saccharomyces cerevisiae (KCTC-7296) resulted in 64% of theoretical ethanol yield.  相似文献   

9.
10.
In this study an industrial Saccharomyces cerevisiae yeast strain capable of fermenting ethanol from pretreated lignocellulosic material was engineered. Genes encoding cellulases (endoglucanase, exoglucanase and β-glucosidase) were integrated into the chromosomal ribosomal DNA and delta regions of a derivative of the K1-V1116 wine yeast strain. The engineered cellulolytic yeast produces ethanol in one step through simultaneous saccharification and fermentation of pretreated biomass without the addition of exogenously produced enzymes. When ethanol fermentation was performed with 10% dry weight of pretreated corn stover, the recombinant strain fermented 63% of the cellulose in 96 h and the ethanol titer reached 2.6% v/v. These results demonstrate that cellulolytic S. cerevisiae strains can be used as a platform for developing an economical advanced biofuel process.  相似文献   

11.
The cellulase production by Trichoderma viride, cultivated on different substrates, namely steam-pretreated Lespedeza, filter paper, microcrystalline cellulose (MCC) or carboxymethyl cellulose (CMC), was studied. Different cellulase systems were secreted when cultivated on different substrates. The cellulolytic enzyme from steam-pretreated Lespedeza medium performed the highest filter paper activity, exoglucanase and endoglucanase activities, while the highest β-glucosidase activity was obtained from the enzyme produced on filter paper medium. The hydrolytic potential of the enzymes produced from different media was evaluated on steam-pretreated Lespedeza. The cellulase from steam-pretreated Lespedeza was found to have the most efficient hydrolysis capability to this specific substrate. The molecular weights of the cellulases produced on steam-pretreated Lespedeza, filter paper and MCC media were 33, 37 and 40 kDa, respectively, and the cellulase from CMC medium had molecular weights of 20 and 43 kDa. The degree of polymerization, crystallinity index and micro structure scanned by the scanning electron microscopy of degraded steam-pretreated Lespedeza residues were also studied.  相似文献   

12.
Streptomyces flavogriseus, a mesophilic actinomycete, produces high levels of extracellular enzymes capable of hydrolyzing cellulose and xylan. One such enzyme, an exoglucanase, has been purified to molecular homogeneity by a sequence involving DEAE Bio-Gel A chromatography, gel permeation chromatography on Bio-Gel P-60, preparative isoelectric focusing, and concanavalin A affinity chromatography. This purification sequence disclosed the presence of several distinct endoglucanase and xylanase fractions. Homogeneity of the purified enzyme was demonstrated by analytical isoelectric focusing and sodium dodecyl sulphate--polyacrylamide gel electrophoresis. The purified enzyme had a molecular weight of approximately 45 000 and an isoelectric point of 4.15. The enzyme demonstrated negligible activity with carboxymethylcellulose as the substrate. It was able to extensively hydrolyse acid-swollen cellulose; the main product of enzyme action was cellobiose.  相似文献   

13.
The cellulolytic complex was isolated from the culture supernatant of Ruminococcus albus strain F-40 grown on cellulose by a Sephacryl S-300HR column chromatography. The molecular mass of the cellulolytic complex was found to be larger than 1.5 x 10(6) Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the cellulolytic complex contained at least 15 proteins with molecular weights from 40kDa to 250 kDa. Among them, 11 proteins showed endoglucanase and/or xylanase activities on the zymograms. Immunological analysis using an antiserum raised against the dockerin domain of endoglucanase VII of R. albus (DocVII) suggested that at least 7 proteins in the cellulolytic complex contained a dockerin domain immunoreactive with the anti-Doc-VII antiserum. Furthermore, DocVII was shown to specifically interact with a 40-kDa protein of the cellulolytic complex by Far-Western blot analysis. These results strongly suggest that the cellulolytic complex produced by R. albus resembles the cellulosome specified for the cellulolytic complex of several clostridia such as Clostridium thermocellum and respective components are assembled into the cellulosome by the mechanism common in all of the cellulolytic clostridia, i.e., the cellulosome is formed by the interaction between a dockerin domain of catalytic components and a cohesin domain of a scaffolding protein.  相似文献   

14.
Degradation of cellulose is of major interest in the quest for alternative sources of renewable energy, for its positive effects on environment and ecology, and for use in advanced biotechnological applications. Due to its microcrystalline organization, celluose is extremely difficult to degrade, although numerous microbes have evolved that produce the appropriate enzymes. The most efficient known natural cellulolytic system is produced by anaerobic bacteria, such as C. thermocellum, that possess a multi-enzymatic complex termed the cellulosome. Our laboratory has devised and developed the designer cellulosome concept, which consists of chimaeric scaffoldins for controlled incorporation of recombinant polysaccharide-degrading enzymes. Recently, we reported the creation of a combinatorial library of four cellulosomal modules comprising a basic chimaeric scaffoldin, i.e., a CBM and 3 divergent cohesin modules. Here, we employed selected members of this library to determine whether the position of defined cellulolytic enzymes is important for optimized degradation of a microcrystalline cellulosic substrate. For this purpose, 10 chimaeric scaffoldins were used for incorporation of three recombinant Thermobifida fusca enzymes: the processive endoglucanase Cel9A, endoglucanase Cel5A and exoglucanase Cel48A. In addition, we examined whether the characteristic properties of the T. fusca enzymes as designer cellulosome components are unique to this bacterium by replacing them with parallel enzymes from Clostridium thermocellum. The results support the contention that for a given set of cellulosomal enzymes, their relative position within a scaffoldin can be critical for optimal degradation of microcrystaline cellulosic substrates.  相似文献   

15.
Stage-specific extracts of Lilium anthers undergoing meiosis exhibited sharp peaks of both endolytic and exolytic β-1,3-glucanase activity at the time of in situ callose breakdown. The endo- and exo-β-1,3-glucanase activities, attributable to different enzymes, were found to have molecular weights of 32,000 and 62,000, respectively. The majority of exoglucanase activity was found in the outer somatic layers of the anther, whereas the majority of endoglucanase activity was located in the immediate surroundings of the meiocytes. The action of both glucanase activities on callose wall removal was monitored. It was shown that endo-β-1,3-glucanase, but not exoglucanase, was able to effect callose wall removal. To the extent that detection of glucanase activity in extracts reflects its activity in vivo, the endoglucanase enzyme may be considered as the immediate agent of callose wall breakdown and, hence, as a critical regulator in the initiation of the development of the gametophyte stage.  相似文献   

16.
The cellulolytic complex was isolated from the culture supernatant of Ruminococcus albus strain F-40 grown on cellulose by a Sephacryl S-300HR column chromatography. The molecular mass of the cellulolytic complex was found to be larger than 1.5×106 Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the cellulolytic complex contained at least 15 proteins with molecular weights from 40 kDa to 250 kDa. Among them, 11 proteins showed endoglucanase and/or xylanase activities on the zymograms. Immunological analysis using an antiserum raised against the dockerin domain of endoglucanase VII of R. albus (DocVII) suggested that at least 7 proteins in the cellulolytic complex contained a dockerin domain immunoreactive with the anti-DocVII antiserum. Furthermore, DocVII was shown to specifically interact with a 40-kDa protein of the cellulolytic complex by Far-Western blot analysis. These results strongly suggest that the cellulolytic complex produced by R. albus resembles the cellulosome specified for the cellulolytic complex of several clostridia such as Clostridium thermocellum and respective components are assembled into the cellulosome by the mechanism common in all of the cellulolytic clostridia, i.e., the cellulosome is formed by the interaction between a dockerin domain of catalytic components and a cohesin domain of a scaffolding protein.  相似文献   

17.
beta-Glucosidases have been isolated from Alocasia macrorrhiza plants. The enzymes are highly specific for the hydrolysis of the cyanogenic glucoside triglochinin endogenous to this plant. Upon chromatography of protein extracts on cation exchange resins and Sephadex G-200, separation into various enzymatically active bands was observed. The main fractions possess molecular weights of approximately 310000 and 105 000, as shown by preparative ultracentrifugation in a linear saccharose gradient. The beta-glucosidases are composed of subunits (molecular weight 55 000 to 60 000), as revealed by sodium dodecylsulfate gel electrophoresis. The result of alkaline disc electrophoresis and isoelectric focusing in polyacrylamide gel suggest that the beta-glucosidase fraction with molecular weight 105 000 is a dissociation product of the 310 000 molecular-weight species. The isoelectric points of the various beta-glocusidase bands, obtained by isoelectric focusing, vary between pH 4.5 and 5.0. The beta-glucosidases show a pronounced specificity for triglochinin. The Km for this substrate (3 times 10(-5) M) is 50 to 100-fold lower than for all other substrates hydrolyzed. Of the other cyanogenic glycosides, only those with an aromatic aglycone, (S)-configuration at the asymmetric carbon atom of the aglycone and glucose as sugar moiety were hydrolyzed to a measurable extent. The pH optimum of the enzyme reaction is 5.5, the temperature optimum around 50 degrees C. Cu2 ions and glucono-1,5-lactone inhibit beta-glucosidase activity approximately 50% at a concentration of 5 times 10(-4) M, while Hg2,Ag and p-chloromercuribenzoate show the same percent inhibition at 5 times 10(-7) M. Lipophilic solvents (ethanol, ethylene glycol monomethylether) activate the beta-glucosidase activity, preferentially by influencing the V values of the enzymes.  相似文献   

18.
Culture filtrates of Mucor pusillus NRRL 2543 contained hydrolytic enzymes that attacked native cellulose, acid-swollen cellulose, carboxymethylcellulose, and cellobiose. The distribution profiles of cellulolytic and beta-glucosidase activities after gel filtration on Sephadex G-75 showed the presence of several active peaks. Glucose was the only product of hydrolysis when native cellulose was used as the substrate. Acid-swollen cellulose, when treated with cellulase free of beta-glucosidase activity, gave rise to glucose, cellobiose, and at least two higher molecular weight components which were also hydrolyzed in turn to cellobiose and glucose. The presence of a multiple cellulolytic enzyme system was indicated, the components of which may have specific roles in the degradation of cellulose.  相似文献   

19.
20.
Adsorption of cellulase from Trichoderma viride on cellulose   总被引:4,自引:0,他引:4  
The adsorption of cellulase from Trichoderma viride (Meicelase CEP) on the surface of pure cellulose was studied. The adsorption was found to obey apparently the Langmuir isotherm. From the data concering the effects of temperature and the crystallinity of cellulose on the Langmuir adsorption parameters, the characteristics of the adsorption of the individual cellulase components, namely CMCase (endoglucanase) and Avicelase (exoglucanase), were discussed. While beta-glucosidase also adsorbed on the surface of cellulose at 5 degrees C, it did not at 50 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号