首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals'' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task) and created novel ‘free-choice’ versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects'' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives.  相似文献   

2.
It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC) is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting) and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies). Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments.  相似文献   

3.
Transfer entropy (TE) is an information-theoretic measure for the investigation of causal interaction between two systems without a requirement of pre-specific interaction model (such as: linear or nonlinear). We introduced an efficient algorithm to calculate TE values between two systems based on observed time signals. By this method, we demonstrated that the TE correctly estimated the coupling strength and the direction of information transmission of two nonlinearly coupled systems. We also calculated TE values of real local field potentials (LFPs) recorded simultaneously in the lateral prefrontal cortex (LPFC) and the striatum of the behavioral monkey, and observed that the TE value from the LPFC to the striatum was stronger than that from the striatum to the LPFC, consistent with anatomical structure between the two areas. Moreover, the TE value dynamically varied dependent on behavior stages of the monkey. These results from simulated and real LFPs data suggested that the TE was able to effectively estimate functional connectivity between different brain regions and characterized their dynamical properties.  相似文献   

4.
Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia.  相似文献   

5.
Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.  相似文献   

6.
Military operations in tropical environments have imposed a significant challenge to the Australian Defence Forces (ADF). The hot and humid conditions are known to cause debilitating effects on soldiers deployed to northern regions of Australia, with the consequence that the effectiveness and efficiency of operations are severely compromised. While the adverse effects of thermal stress on soldiers' physiological capability are well established, this has not been confirmed for cognitive performance. A select range of psychometric tests were administered and functional brain electrical activity imaging was performed to investigate the impact of thermal stress on cognitive performance. The brain electrical activity of subjects was measured while undertaking a range of cognitive tasks. Steady State Probe Topography (SSPT), a novel brain imaging technology, was employed to monitor the changes in regional brain activity and neural processing speed of subjects under thermal stress. The psychometric test batteries included the following tasks; Rey Auditory Verbal Learning Test; Inspection Time; Digit Span test; a spatial working memory task; and the AX-continuous performance task. These tasks measure a range of cognitive processes including attention, memory, verbal learning, information processing and concentration. The functional brain imaging provided topographical information, which showed changes in electrical activity in response to thermal stress during cognitive performance. These changes in brain electrical activity and neural speed induced by thermal stress may help to identify the type of cognitive functions that are likely to be impaired under operational conditions. Results indicated that subjects experienced increasing cardiovascular strain through thermally neutral to thermally straining conditions. The results from the psychometric test battery showed some promising effects given the small sample size including deficits in working memory, in information retention and in information processing. There was also marked differences in the electrical responses of the brain when subjects were thermally strained. The Steady-State Visual Evoked Potential recordings showed an increase in amplitude and a decrease in latency, suggesting an increase in the utilisation of neural resources or effort by subjects to maintain the same level of performance as under thermally neutral conditions. The data are suggestive of the high sensitivity of brain imaging techniques with high temporal resolution to identify important decrements in cognitive performance in hostile environments.  相似文献   

7.
Physical activity has been recognized as an important protective factor reducing disability and mortality and therefore it is focus of many health promotion activities at all ages. More recently a growing body of literature is focusing whether physical activity could also have a positive impact on brain aging with exploring healthy brain aging as well as on cognitive impairment and dementia. An increasing number of prospective studies and randomized controlled trials involving humans take place both with older adults with normal cognition as well as with mild cognitive impairment or dementia. However, the body of evidence is still sparse and many methodological issues make comparisons across studies challenging. Increasingly research into underlying mechanisms in relation to physical activity and brain aging identify biomarker candidates with especially neuroimaging measurements being more used in trials with humans. Whilst the evidence base is slowly growing more detailed research is needed to address methodological issues to finally achieve clinical relevance. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

8.
Neuronal discharges in the primate temporal lobe, but not in the striate and extrastriate cortex, reliably reflect stimulus awareness. However, it is not clear whether visual consciousness should be uniquely localized in the temporal association cortex. Here we used binocular flash suppression to investigate whether visual awareness is also explicitly reflected in feature-selective neural activity of the macaque lateral prefrontal cortex (LPFC), a cortical area reciprocally connected to the temporal lobe. We show that neuronal discharges in the majority of single units and recording sites in the LPFC follow the phenomenal perception of a preferred stimulus. Furthermore, visual awareness is reliably reflected in the power modulation of high-frequency (>50?Hz) local field potentials in sites where spiking activity is found to be perceptually modulated. Our results suggest that the activity of neuronal populations in at least two association cortical areas represents the content of conscious visual perception.  相似文献   

9.
《Bio Systems》2008,91(3):881-889
There has been considerable success in allocating function to the different parts of the brain. We also know much about brain organisation in different regions of the brain and how different brain regions connect to one another. One of the most important next steps for modern neuroscience is to work out how different areas of the brain interact with one another. In particular we need to know how sensory regions communicate with association areas and vice versa. This article explores how top-down signals originating from association areas may be used to process and transform bottom-up representations originating from sensory areas of the brain. Simple models of networks containing topographically organised ensembles of neurons used to integrate and process information are described. The different models can be used to process information in a variety of different ways that could be used as the starting point for a variety of cognitive operations, in particular the extraction of abstract information from sensory representations.  相似文献   

10.
Tinsley CJ 《Bio Systems》2007,90(3):881-889
There has been considerable success in allocating function to the different parts of the brain. We also know much about brain organisation in different regions of the brain and how different brain regions connect to one another. One of the most important next steps for modern neuroscience is to work out how different areas of the brain interact with one another. In particular we need to know how sensory regions communicate with association areas and vice versa. This article explores how top-down signals originating from association areas may be used to process and transform bottom-up representations originating from sensory areas of the brain. Simple models of networks containing topographically organised ensembles of neurons used to integrate and process information are described. The different models can be used to process information in a variety of different ways that could be used as the starting point for a variety of cognitive operations, in particular the extraction of abstract information from sensory representations.  相似文献   

11.
Understanding brain function requires knowing both how neural activity encodes information and how this activity generates appropriate responses. Electrophysiological, imaging and immediate early gene immunostaining studies have been instrumental in identifying and characterizing neurons that respond to different sensory stimuli, events and motor actions. Here we highlight approaches that have manipulated the activity of physiologically classified neurons to determine their role in the generation of behavioural responses. Previous experiments have often exploited the functional architecture observed in many cortical areas, where clusters of neurons share response properties. However, many brain structures do not exhibit such functional architecture. Instead, neurons with different response properties are anatomically intermingled. Emerging genetic approaches have enabled the identification and manipulation of neurons that respond to specific stimuli despite the lack of discernable anatomical organization. These approaches have advanced understanding of the circuits mediating sensory perception, learning and memory, and the generation of behavioural responses by providing causal evidence linking neural response properties to appropriate behavioural output. However, significant challenges remain for understanding cognitive processes that are probably mediated by neurons with more complex physiological response properties. Currently available strategies may prove inadequate for determining how activity in these neurons is causally related to cognitive behaviour.  相似文献   

12.
In the field of the neurobiology of learning, significant emphasis has been placed on understanding neural plasticity within a single structure (or synapse type) as it relates to a particular type of learning mediated by a particular brain area. To appreciate fully the breadth of the plasticity responsible for complex learning phenomena, it is imperative that we also examine the neural mechanisms of the behavioral instantiation of learned information, how motivational systems interact, and how past memories affect the learning process. To address this issue, we describe a model of complex learning (rodent adaptive navigation) that could be used to study dynamically interactive neural systems. Adaptive navigation depends on the efficient integration of external and internal sensory information with motivational systems to arrive at the most effective cognitive and/or behavioral strategies. We present evidence consistent with the view that during navigation: 1) the limbic thalamus and limbic cortex is primarily responsible for the integration of current and expected sensory information, 2) the hippocampal-septal-hypothalamic system provides a mechanism whereby motivational perspectives bias sensory processing, and 3) the amygdala-prefrontal-striatal circuit allows animals to evaluate the expected reinforcement consequences of context-dependent behavioral responses. Although much remains to be determined regarding the nature of the interactions among neural systems, new insights have emerged regarding the mechanisms that underlie flexible and adaptive behavioral responses.  相似文献   

13.
Evolutionary shifts in species-typical group size ('sociality') probably reflect natural selection on motivational processes such as social arousal, approach-avoidance, reward, stress/anxiety and dominance. Using four songbird species that differ selectively in sociality (one territorial, one modestly gregarious, and two highly gregarious species), we here examined immediate early gene (IEG) responses of relevant brain regions following exposure to a same-sex conspecific. The paradigm limited behavioural performance, thus species differences should reflect divergence in motivational and/or perceptual processes. Within the extended medial amygdala (which is involved in appetitive approach, social arousal and avoidance), we observed species differences in IEG response that are negatively graded in relation to sociality. In addition, brain areas that are involved in social stress and dominance-related behaviour (ventrolateral septum, anterior hypothalamus and lateral subdivision of the ventromedial hypothalamus) exhibited IEG responses that dichotomously distinguish the territorial species from the three gregarious species. The IEG responses of areas involved in reward (nucleus accumbens and ventral pallidum) and general stress processes (e.g. paraventricular hypothalamus, lateral bed nucleus of the stria terminalis and most areas of the lateral septum) do not correlate with sociality, indicating that social evolution has been accompanied by selection on a relatively discrete suite of motivational systems.  相似文献   

14.
Within the field of cognitive neuroscience, functional magnetic resonance imaging (fMRI) is a popular method of visualizing brain function. This is in part because of its excellent spatial resolution, which allows researchers to identify brain areas associated with specific cognitive processes. However, in the quest to localize brain functions, it is relevant to note that many cognitive, sensory, and motor processes have temporal distinctions that are imperative to capture, an aspect that is left unfulfilled by fMRI’s suboptimal temporal resolution. To better understand cognitive processes, it is thus advantageous to utilize event-related potential (ERP) recording as a method of gathering information about the brain. Some of its advantages include its fantastic temporal resolution, which gives researchers the ability to follow the activity of the brain down to the millisecond. It also directly indexes both excitatory and inhibitory post-synaptic potentials by which most brain computations are performed. This sits in contrast to fMRI, which captures an index of metabolic activity. Further, the non-invasive ERP method does not require a contrast condition: raw ERPs can be examined for just one experimental condition, a distinction from fMRI where control conditions must be subtracted from the experimental condition, leading to uncertainty in associating observations with experimental or contrast conditions. While it is limited by its poor spatial and subcortical activity resolution, ERP recordings’ utility, relative cost-effectiveness, and associated advantages offer strong rationale for its use in cognitive neuroscience to track rapid temporal changes in neural activity. In an effort to foster increase in its use as a research imaging method, and to ensure proper and accurate data collection, the present article will outline – in the framework of a paradigm using semantic categorization to examine the effects of antipsychotics and schizotypy on the N400 – the procedure and key aspects associated with ERP data acquisition.  相似文献   

15.
It is without a doubt that humans are first and foremost visual beings. Even though the other sensory modalities provide us with valuable information, it is vision that generally offers the most reliable and detailed information concerning our immediate surroundings. It is therefore not surprising that nearly a third of the human brain processes, in one way or another, visual information. But what happens when the visual information no longer reaches these brain regions responsible for processing it? Indeed numerous medical conditions such as congenital glaucoma, retinis pigmentosa and retinal detachment, to name a few, can disrupt the visual system and lead to blindness. So, do the brain areas responsible for processing visual stimuli simply shut down and become non-functional? Do they become dead weight and simply stop contributing to cognitive and sensory processes? Current data suggests that this is not the case. Quite the contrary, it would seem that congenitally blind individuals benefit from the recruitment of these areas by other sensory modalities to carry out non-visual tasks. In fact, our laboratory has been studying blindness and its consequences on both the brain and behaviour for many years now. We have shown that blind individuals demonstrate exceptional hearing abilities. This finding holds true for stimuli originating from both near and far space. It also holds true, under certain circumstances, for those who lost their sight later in life, beyond a period generally believed to limit the brain changes following the loss of sight. In the case of the early blind, we have shown their ability to localize sounds is strongly correlated with activity in the occipital cortex (the location of the visual processing), demonstrating that these areas are functionally engaged by the task. Therefore it would seem that the plastic nature of the human brain allows them to make new use of the cerebral areas normally dedicated to visual processing.  相似文献   

16.
A classical approach in the neurosciences is to study neural activity modulations induced by a stimulus, a task, etc. This approach is anchored in a behaviourist culture and has proven informative within certain limits. The present paper shows that this approach nonetheless neglects aspects of neural activity that can also contribute important information about brain function. Over the last years, the contributions with the strongest impact on progress in cognitive neuroscience have used other approaches that exploit a spatial or temporal variability of neural activity that standard analyses consider as noise and hence do not take into account. By applying multi-variate analyses, spatial variability of evoked responses has permitted decoding sensory and cognitive representations in the brain. Temporal variability of ongoing neural activity influences how stimuli are perceived trial by trial as well as the associated evoked responses which points out the importance of spontaneous brain activity for cognition. We describe these two kind of approaches based on experiments using functional neuroimaging but the conclusions generalize to other techniques applied in the neurosciences.  相似文献   

17.
The information processing by the human brain was studied in two types of cognitive activity: solving a visual-spatial task and a verbal task. One of the Wechsler tests represented a visual-spatial task, whereas a speed-reading was used as a verbal task. A correlation dimension calculated from the EEG time series, was shown to depend on individual capabilities. Subjects with a higher correlation dimension in frontal brain areas executed more successfully the spatial task.  相似文献   

18.
It must be generally recognized today that areas "contiguous" to a particular science have great theoretical and practical importance, which arises during contact of various sciences in some important objective. This is particularly true with respect to such a complex research objective as the thinking human brain. We find the ancients already beginning to speculate about the question of the relation of the "soul" to the body and about which body organ has the closest relation to psychological activity. Gradually this question became more concrete and was broken down into a group of more particular problems on which many scholars have been working. The early "classical" psychophysiology was primarily concerned with study of the relation of the senses and perception to the physical properties of stimuli and to the anatomical-physiological apparatuses of the peripheral sense organs. Currently, the main emphasis is shifting more and more to a study of the central mechanisms of psychological processes. This fundamental shift in approach to the traditional "psychophysical" problem (now frequently referred to as the psychophysiological problem) first took place in the area of studying the mechanisms of association, and was subsequently spread over studies of perception, emotion, voluntary movements, cognitive processes, and, finally, individual psychological differences.  相似文献   

19.
Age-associated dementia, in particular Alzheimer's disease (AD), will be a major concern of the 21st century. Research into normal brain aging and AD will therefore become increasingly important. As for other areas of medicine, the availability of good animal models will be a limiting factor for progress. Given the complexity of the human brain, the identification of appropriate primate models will be essential to further knowledge of the disease. In this review, we describe the features of brain aging and age-associated neurodegeneration in a small lemurian primate, the Microcebus murinus, also referred to as the mouse lemur. The mouse lemur has a relatively short life expectancy, and animals over 5 years of age are considered to be elderly. Among elderly mouse lemurs, the majority show normal brain aging, whereas approximately 20% develop neurodegeneration. This Microcebus age-associated neurodegeneration is characterized by a massive brain atrophy, abundant amyloid plaques, a cytoskeletal Tau pathology and a loss of cholinergic neurons. While elderly mouse lemurs with normal brain aging maintain memory function and social interaction, animals with age-associated neurodegeneration lose their cognitive and social capacities and demonstrate certain similarities with age-associated human AD. We conclude that M. murinus is an interesting primate model for the study of normal brain aging and the biochemical dysfunctions occurring in age-associated neurodegeneration. Mouse lemurs might also become an increasingly important model for the development of novel treatments in this domain.  相似文献   

20.
We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号