首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
BACKGROUND: The high affinity Fcgamma receptor I (FcgammaRI; aka CD64) is expressed by dendritic cells (DC) and antigens targeted to this receptor elicit enhanced immune responses. This study was designed to test the hypothesis that targeting an adenoviral (Ad) vector to FcgammaRI would lead to enhanced transduction of DC and an improved immune response to vector-encoded antigens. METHODS: A bispecific adaptor molecule consisting of a trimeric adenovirus fiber-binding moiety fused to a single-chain antibody specific for human FcgammaRI was generated. Transduction of cultured cells, including human DC, by the FcgammaRI-targeted Ad was then evaluated using reporter genes (GFP, luciferase). Immunophenotypic and functional characteristics of vector-transduced DC were also measured by flow cytometry, cytokine ELISA and mixed lymphocyte reaction (MLR); antigen-specific stimulation of autologous CD8(+) T cells was evaluated using vectors encoding cytomegalovirus (CMV) pp65. RESULTS: FcgammaRI-targeted Ad transduced primary DC with 10-15-fold greater efficiency than unmodified Ad or Ad vectors complexed to an adaptor protein that targeted an irrelevant receptor. However, FcgammaRI-targeting had no effect of Ad-induced activation of DC, as measured by cytokine release or expression of cell surface activation markers. Finally, FcgammaRI-targeting of vectors encoding CMV pp65 resulted in an increase in the activation of antigen-specific autologous human CD8(+) T cells. CONCLUSIONS: FcgammaRI-targeting significantly enhances the efficiency of Ad vector-mediated gene transfer in primary human DC, and results in an improved immune response to a vector-encoded antigen.  相似文献   

2.
The ability of dendritic cells (DCs) to orchestrate innate and adaptive immune responses has been exploited to develop potent anti-cancer immunotherapies. Recent clinical trials exploring the efficacy of ex vivo modified autologous DC-based vaccines have reported some promising results. However, in vitro generation of autologous DCs for clinical administration, their loading with tumor associated antigens (TAAs) and their activation, is laborious and expensive, and, as a result of inter-individual variability in the personalized vaccines, remains poorly standardized. An attractive alternative approach is to load resident DCs in vivo by targeted delivery of TAAs, using viral vectors and activating them simultaneously. To this end, we have constructed genetically-modified adenoviral (Ad) vectors and bispecific adaptor molecules to retarget Ad vectors encoding TAAs to the CD40 receptor on DCs. Pre-clinical human and murine studies conducted so far have clearly demonstrated the suitability of a 'two-component' (i.e. Ad and adaptor molecule) configuration for targeted modification of DCs in vivo for cancer immunotherapy. This review summarizes recent progress in the development of CD40-targeted Ad-based cancer vaccines and highlights pre-clinical issues in the clinical translation of this approach.  相似文献   

3.
4.
Important therapeutic applications of genetically modified dendritic cells (DC) have been proposed; however, current vector systems have demonstrated only limited gene delivery efficacy to this cell type. By means of bispecific Abs, we have dramatically enhanced gene transfer to monocyte derived DC (MDDC) by retargeting adenoviral (Ad) vectors to a marker expressed on DC, CD40. Adenovirus targeted to CD40 demonstrated dramatic improvements in gene transfer relative to untargeted Ad vectors. Fundamental to the novelty of this system is the capacity of the vector itself to modulate the immunological status of the MDDC. This vector induces DC maturation as demonstrated phenotypically by increased expression of CD83, MHC, and costimulatory molecules, as well as functionally by production of IL-12 and an enhanced allostimulatory capacity in a MLR. In comparing this vector to other Ad-based gene transfer systems, we have illustrated that the features of DC maturation are not a function of the Ad particle, but rather a consequence of targeting to the CD40 marker. This vector approach may thus mediate not only high-efficiency gene delivery but also serve a proactive role in DC activation that could ultimately strengthen the utility of this vector for immunotherapy strategies.  相似文献   

5.
Dendritic cells (DC) are antigen-presenting cells pivotal for inducing immunity or tolerance. Gene transfer into DC is an important strategy for developing immunotherapeutic approaches against infectious pathogens and cancers. One of the vectors previously described for the transduction of human monocytes or DC is the recombinant adeno-associated virus (rAAV), with a genome conventionally packaged as a single-stranded (ss) molecule. Nevertheless, its use is limited by the poor and variable transduction efficiency of DC. In this study, AAV type 1 (AAV1) and AAV2 vectors, which expressed the enhanced green fluorescent protein and were packaged as ss or self-complementary (sc) duplex strands, were used to transduce different DC subsets generated ex vivo and the immunophenotypes, states of differentiation, and functions of the subsets were carefully examined. We show here for the first time that a single exposure of monocytes (M(o)) or CD34(+) progenitors (CD34) to sc rAAV1 or sc rAAV2 leads to high transduction levels (5 to 59%) of differentiated M(o)-DC, M(o)-Langerhans cells (LC), CD34-LC, or CD34-plasmacytoid DC (pDC), with no impact on their phenotypes and functional maturation of these cells, compared to those of exposure to ss rAAV. Moreover, we show that all these DC subpopulations can also be efficiently transduced after commitment to their differentiation pathways. Furthermore, these DC subsets transduced with sc rAAV1 expressing a tumor antigen were potent activators of a CD8(+)-T-cell clone. Altogether, these results show the high potential of sc AAV1 and sc AAV2 vectors to transduce ex vivo conventional DC, LC, or pDC or to directly target them in vivo for the design of new DC-based immunotherapies.  相似文献   

6.
We present a flexible and highly specific targeting method for lentiviral vectors based on single-chain antibodies recognizing cell-surface antigens. We generated lentiviral vectors specific for human CD105(+) endothelial cells, human CD133(+) hematopoietic progenitors and mouse GluA-expressing neurons. Lentiviral vectors specific for CD105 or for CD20 transduced their target cells as efficiently as VSV-G pseudotyped vectors but discriminated between endothelial cells and lymphocytes in mixed cultures. CD133-targeted vectors transduced CD133(+) cultured hematopoietic progenitor cells more efficiently than VSV-G pseudotyped vectors, resulting in stable long-term transduction. Lentiviral vectors targeted to the glutamate receptor subunits GluA2 and GluA4 exhibited more than 94% specificity for neurons in cerebellar cultures and when injected into the adult mouse brain. We observed neuron-specific gene modification upon transfer of the Cre recombinase gene into the hippocampus of reporter mice. This approach allowed targeted gene transfer to many cell types of interest with an unprecedented degree of specificity.  相似文献   

7.
Lentiviral gene transfer vectors are suitable for genetically modifying non-cycling primary human cells. In this study, we analyzed transduced human dendritic cells (DC) generated by the use of three different GFP-encoding lentiviral vectors, HIV-2 ROD A Δenv-GFP (ROD A), SIVsmm PBj ΔE EGFP (PBj), and SIVmac ΔE EGFP (SIVmac). CD14+ monocytes were isolated from buffy coat, transduced, and differentiated to immature and mature DC. Cytofluometric analysis of DC revealed high transduction efficiencies at MOI 1 for simian immunodeficiency virus (SIV)-derived vectors PBj and SIVmac ranging between 80–90 and 70–90%, respectively. In contrast, transduction with ROD A resulted only in approximately 30%-positive DC at the same MOI. Of note, none of the analyzed vectors affected expression of maturation and/or activation markers. Moreover, transduction with PBj or SIVmac did not induce significant cytokine responses whereas ROD A transduction stimulated weak interferon-alpha responses. SIVmac transduced DC showed normal phagocytosis of antigen and normal allo T cell stimulatory capacity when compared with untreated DC. Thus, the SIVmac lentiviral transduction vector is suitable for efficient genetic modification of human DC without affecting phenotype or function and thus qualifies this vector as a versatile tool for use in basic research.  相似文献   

8.
Gene transfer vectors containing adenovirus (Ad) serotype 35 (Ad35) fibers have shown promise for cancer and stem cell gene therapy. In this study, we attempted to improve the in vitro and in vivo infection properties of these vectors by increasing their affinity to the Ad35 fiber receptor CD46. We constructed Ad vectors containing either the wild-type Ad35 fiber knob (Ad5/35) or Ad35 knob mutants with 4-fold- and 60-fold-higher affinity to CD46 (Ad5/35+ and Ad5/35++, respectively). In in vitro studies with cell lines, the higher affinities of Ad5/35+ and Ad5/35++ to CD46 did not translate into correspondingly higher transduction efficiencies, regardless of the CD46 receptor density present on cells. However, in vivo, in a mouse model with preestablished CD46(high) liver metastases, intravenous injection of Ad5/35++ resulted in more-efficient tumor cell transduction. We conclude that Ad5/35 vectors with increased affinity to CD46 have an advantage in competing with non-CD46-mediated sequestration of vector particles after intravenous injection.  相似文献   

9.
Adenovirus-mediated gene delivery via the intramuscular route efficiently promotes an immune response against the transgene product. In this study, a recombinant adenovirus vector encoding beta-galactosidase (Ad beta Gal) was used to transduce dendritic cells (DC), which are antigen-presenting cells, as well as myoblasts and endothelial cells (EC), neither of which present antigens. C57BL/6 mice received a single intramuscular injection of Ad beta Gal-transduced DC, EC, or myoblasts and were then monitored for anti-beta-galactosidase (anti-beta-Gal) antibody production, induction of gamma interferon-secreting CD8(+) T cells, and protection against melanoma tumor cells expressing beta-Gal. While all transduced cell types were able to elicit an antibody response against the transgene product, the specific isotypes were distinct, with exclusive production of immunoglobulin G2a (IgG2a) antibodies following injection of transduced DC and EC versus equivalent IgG1 and IgG2a responses in mice inoculated with transduced myoblasts. Transduced DC induced a strong ex vivo CD8(+) T-cell response at a level of 50% of the specific response obtained with the Ad beta Gal control. In contrast, this response was 6- to 10-fold-lower in animals injected with transduced myoblasts and EC. Accordingly, only animals injected with transduced DC were protected against a beta-Gal tumor challenge. Thus, in order to induce a strong and protective immune response to an adenovirus-encoded transgene product, it is necessary to transduce cells of dendritic lineage. Importantly, it will be advantageous to block the transduction of DC for adenovirus-based gene therapy strategies.  相似文献   

10.
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.  相似文献   

11.
Recombinant adenoviral vectors (AdV) are potent vehicles for antigen engineering of dendritic cells (DC). DC engineered with AdV to express full length tumor antigens are capable stimulators of antigen-specific polyclonal CD8+ and CD4+ T cells. To determine the impact of AdV on the HLA class I antigen presentation pathway, we investigated the effects of AdV transduction on antigen processing machinery (APM) components in human DC. Interactions among AdV transduction, maturation, APM regulation and T cell activation were investigated. The phenotype and cytokine profile of DC transduced with AdV was intermediate, between immature (iDC) and matured DC (mDC). Statistically significant increases in expression were observed for peptide transporters TAP-1 and TAP-2, and HLA class I peptide-loading chaperone ERp57, as well as co-stimulatory surface molecule CD86 due to AdV transduction. AdV transduction enhanced the expression of APM components and surface markers on mDC, and these changes were further modulated by the timing of DC maturation. Engineering of matured DC to express a tumor-associated antigen stimulated a broader repertoire of CD8+ T cells, capable of recognizing immunodominant and subdominant epitopes. These data identify molecular changes in AdV-transduced DC (AdV/DC) that could influence T cell priming and should be considered in design of cancer vaccines.  相似文献   

12.
BACKGROUND: Gene delivery in dendritic cells (DC) has raised considerable interest to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific fashion. Among immature DC, Langerhans cells (LC) are attractive candidates for antigen delivery using lentiviral vectors (LV). METHODS: LC derived from monocytes (Mo-LC), or derived from CD34+ cells (CD34-LC) in the presence of cytokine cocktail, were transduced with LV expressing enhanced green fluorescent protein (E-GFP) under the control of the ubiquitous phosphoglycerate kinase (PGK) promoter at a multiplicity of infection of 18, at days 0 to 3 for Mo-LC, or at days 0 to 12 for CD34-LC. We assessed gene transfer levels from the percentage of E-GFP+ cells in the final cultures, and examined the morphology, immunophenotype, state of differentiation and function of transduced LC. RESULTS: Day 0 transduction of monocytes or CD34+ progenitors before cytokine pre-activation and LC differentiation resulted in stable gene expression in 7.8% of Mo-LC and 24% of CD34-LC. Monocyte-derived DC (Mo-DC) differentiated in serum-free medium were also efficiently transduced up to 13.2%. Interestingly, Mo-LC cells committed towards LC phenotype were permissive for transduction up to day 3. Transduction levels of CD34-LC peaked at day 6 to 44% and decreased thereafter. LV transduction did not perturb viability, phenotype and function of E-GFP-expressing LC. CONCLUSIONS: LC generated ex vivo can serve as vaccine vehicles in humans through efficient transduction by LV. These LC will be helpful to assess in vitro the immunogenicity of gene therapy vectors, from the characterization of their phenotypic and functional maturation.  相似文献   

13.
Silver J  Mei YF 《PloS one》2011,6(3):e17532
Replication-competent adenovirus type 5 (Ad5) vectors promise to be more efficient gene delivery vehicles than their replication-deficient counterparts, and chimeric Ad5 vectors that are capable of targeting CD46 are more effective than Ad5 vectors with native fibers. Although several strategies have been used to improve gene transduction and oncolysis, either by modifying their tropism or enhancing their replication capacity, some tumor cells are still relatively refractory to infection by chimeric Ad5. The oncolytic effects of the vectors are apparent in certain tumors but not in others. Here, we report the biological and oncolytic profiles of a replication-competent adenovirus 11p vector (RCAd11pGFP) in colon carcinoma cells. CD46 was abundantly expressed in all cells studied; however, the transduction efficiency of RCAd11pGFP varied. RCAd11pGFP efficiently transduced HT-29, HCT-8, and LS174T cells, but it transduced T84 cells, derived from a colon cancer metastasis in the lung, less efficiently. Interestingly, RCAd11p replicated more rapidly in the T84 cells than in HCT-8 and LS174T cells and as rapidly as in HT-29 cells. Cell toxicity and proliferation assays indicated that RCAd11pGFP had the highest cell-killing activities in HT29 and T84 cells, the latter of which also expressed the highest levels of glycoproteins of the carcinoma embryonic antigen (CEA) family. In vivo experiments showed significant growth inhibition of T84 and HT-29 tumors in xenograft mice treated with either RCAd11pGFP or Ad11pwt compared to untreated controls. Thus, RCAd11pGFP has a potent cytotoxic effect on colon carcinoma cells.  相似文献   

14.
The tumor necrosis factor (TNF) family comprises a group of ligands that regulate cell proliferation, differentiation, activation, maturation and apoptosis through interaction with the corresponding TNF receptor family members. In this study, we have evaluated whether adenovirus-mediated intratumoral gene transfer of CD40L, RANKL, or 4-1BBL elicits an immune response to established murine MC38 and TS/A tumors. Intratumoral administration of the recombinant adenoviral vectors expressing CD40L, RANKL or 4-1BBL 7 days post-tumor cell inoculation resulted in significant inhibition of MC38 tumor growth for all three ligands when compared with control groups treated with either saline or control adenovirus. However, intratumoral injection of Ad-4-1BBL or Ad-CD40L resulted in a significantly stronger inhibition of TS/A tumor progression than did Ad-RANKL treatment. We also demonstrated that intratumoral administration of dendritic cells (DC) transduced with adenoviral vectors encoding the TNF-related ligands resulted in a significant inhibition of MC38 tumor growth as compared with control groups treated with Ad-LacZ-transduced DC or saline-treated DC. In addition, DC overexpressing CD40L secreted considerably more IL-12 and expressed higher levels of the co-stimulatory molecules, CD80, CD86 and CD40, than did DC overexpressing LacZ, 4-1BBL or RANKL. We have also demonstrated that DC/CD40L, DC/4-1BBL, and DC/RANKL survived significantly longer than control DC or DC infected with the LacZ vector. Taken together, these results demonstrate that adenoviral gene transfer of CD40L, RANKL or 4-1BBL elicit a significant antitumor effect in two different tumor models, with CD40L gene transfer inducing the strongest antitumor effect.  相似文献   

15.
The aim of this study was to determine the impact of lentiviral transduction on primary murine B cells. Studying B cell activities in vivo or using them for tolerance induction requires that the cells remain unaltered in their biological behavior except for expression of the transgene. As we show here, murine B cells can efficiently be transduced by lentiviral, VSV-G-pseudotyped vectors without the necessity of prior activation. Culture with LPS gave enhanced transduction efficiencies but led to the upregulation of CD86 and proliferation of the cells. Transduction of naive B cells by lentiviral vectors was dependent on multiplicity of infection and did not lead to a concomitant activation. Furthermore, the transduced cells could be used for studies in the NOD mouse system without altering the onset of diabetes. We conclude that lentiviral gene transfer into naive B cells is a powerful tool for manipulation of B cells for therapeutic applications.  相似文献   

16.
17.
Recombinant adenovirus (Ad) type 35 (rAd35) shows great promise as vaccine carrier with the advantage of low pre-existing immunity in human populations, in contrast to the more commonly used rAd5 vector. The rAd35 vector uses CD46 as a high-affinity receptor, which, unlike the rAd5 receptor, is expressed on human dendritic cells (DC), the most powerful APCs identified to date. In this study, we show that in contrast to rAd5, rAd35 infects migrated and mature CD83+ cutaneous DC with high efficiency (up to 80%), when delivered intradermally in an established human skin explant model. The high transduction efficiency is in line with high expression levels of CD46 detected on migratory cutaneous DC, which proved to be further increased upon intradermal administration of GM-CSF and IL-4. As compared with Ad5, these Ad35 infection characteristics translate into higher absolute numbers of skin-emigrated DC per explant that both express the transgene and are phenotypically mature. Finally, we demonstrate that upon intracutaneous delivery of a rAd35 vaccine encoding the circumsporozoite (CS) protein of Plasmodium falciparum, emigrated DC functionally express and process CS-derived epitopes and are capable of activating specific CD8+ effector T cells, as evidenced by activation of an HLA-A2-restricted CS-specific CD8+ T cell clone. Collectively, these data demonstrate the utility of rAd35 vectors for efficient in vivo human DC transduction.  相似文献   

18.
Over the years, the unique capacity of dendritic cells (DC) for efficient activation of naive T cells has led to their extensive use in cancer immunotherapy protocols. In order to be able to fulfil their role as antigen-presenting cells, the antigen of interest needs to be efficiently introduced and subsequently correctly processed and presented by the DC. For this purpose, a variety of both viral and non-viral antigen-delivery systems have been evaluated. Amongst those, HIV-1-derived lentiviral vectors have been used successfully to transduce DC.This review considers the use of HIV-1-derived lentiviral vectors to transduce human and murine DC for cancer immunotherapy. Lentivirally transduced DC have been shown to present antigenic peptides, prime transgene-specific T cells in vitro and elicit a protective cytotoxic T-lymphocyte (CTL) response in animal models. Different parameters determining the efficacy of transduction are considered. The influence of lentiviral transduction on the DC phenotype and function is described and the induction of immune responses by lentivirally transduced DC in vitro and in vivo is discussed in detail. In addition, direct in vivo administration of lentiviral vectors aiming at the induction of antigen-specific immunity is reviewed. This strategy might overcome the need for ex vivo generation and antigen loading of DC. Finally, future perspectives towards the use of lentiviral vectors in cancer immunotherapy are presented.  相似文献   

19.
Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.  相似文献   

20.
The success of gene therapy depends on the specificity of transgene delivery by therapeutic vectors. The present study describes the use of an adenovirus (Ad) fiber replacement strategy for genetic targeting of the virus to human CD40, which is expressed by a variety of diseased tissues. The tropism of the virus was modified by the incorporation into its capsid of a protein chimera comprising structural domains of three different proteins: the Ad serotype 5 fiber, phage T4 fibritin, and the human CD40 ligand (CD40L). The tumor necrosis factor-like domain of CD40L retains its functional tertiary structure upon incorporation into this chimera and allows the virus to use CD40 as a surrogate receptor for cell entry. The ability of the modified Ad vector to infect CD40-positive dendritic cells and tumor cells with a high efficiency makes this virus a prototype of choice for the derivation of therapeutic vectors for the genetic immunization and targeted destruction of tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号