首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The phoR gene is a bifunctional regulatory gene for the phosphate regulon of Escherichia coli. It acts as a negative regulator in the presence of excess phosphate and as a positive regulator with limited phosphate, through modification of PhoB protein. We constructed several phoR genes, with various deletions in the 5 regions, which were regulated by the trp-lac hybrid promoter. The PhoR1084 and PhoR1159 proteins that lack the 83 and 158 N-terminal amino acids, respectively, retained the positive function for the expression of phoA that codes for alkaline phosphatase, but lacked the negative function. The PhoR1263 protein that lacks the 262 N-terminal amino acids was deficient in both functions. An antiserum against PhoR1084 protein was prepared. Western blot analysis of the subcellular fractions obtained by differential centrifugation indicated that the intact PhoR and PhoR1084 proteins are located in the inner membrane and cytoplasmic fractions, respectively. The results suggest that PhoR protein is anchored to the cytoplasmic membrane by the amino-terminal region.  相似文献   

2.
Bacterial chemoreceptors sense environmental stimuli and govern cell movement by transmitting the information to the flagellar motors. The highly conserved cytoplasmic domain of chemoreceptors consists in an alpha‐helical hairpin that forms in the homodimer a coiled‐coil four‐helix bundle. Several classes of chemoreceptors that differ in the length of the coiled‐coil structure were characterized. Many bacterial species code for chemoreceptors that belong to different classes, but how these receptors are organized and function in the same cell remains an open question. E. coli cells normally code for single class chemoreceptors that form extended arrays based on trimers of dimers interconnected by the coupling protein CheW and the kinase CheA. This structure promotes effective coupling between the different receptors in the modulation of the kinase activity. In this work, we engineered functional derivatives of the Tsr chemoreceptor of E. coli that mimic receptors whose cytoplasmic domain is longer by two heptads. We found that these long Tsr receptors did not efficiently mix with the native receptors and appeared to function independently. Our results suggest that the assembly of membrane‐bound receptors of different specificities into mixed clusters is dictated by the length‐class to which the receptors belong, ensuring cooperative function only between receptors of the same class.  相似文献   

3.
The Escherichia coli serine chemoreceptor (Tsr) is a protein with a simple topology consisting of two membrane-spanning sequences (TM1 and TM2) separating a large periplasmic domain from N-terminal and C-terminal cytoplasmic regions. We analyzed the contributions of several sequence elements to the cytoplasmic localization of the C-terminal domain by using chemoreceptor-alkaline phosphatase gene fusions. The principal findings were as follows. (i) The cytoplasmic localization of the C-terminal domain depended on TM2 but was quite tolerant of mutations partially deleting or introducing charged residues into the sequence. (ii) The basal level of C-terminal domain export was significantly higher in proteins with the wild-type periplasmic domain than in derivatives with a shortened periplasmic domain, suggesting that the large size of the wild-type domain promotes partial membrane misinsertion. (iii) The membrane insertion of deletion derivatives with a single spanning segment (TM1 or TM2) could be controlled by either an adjacent positively charged sequence or an adjacent amphipathic sequence. The results provide evidence that the generation of the Tsr membrane topology is an overdetermined process directed by an interplay of sequences promoting and opposing establishment of the normal structure.  相似文献   

4.
The Escherichia coli NarX, NarQ, NarL and NarP proteins comprise a two-component regulatory system that controls the expression of many anaerobic electron-transport and fermentation-related genes in response to nitrate and nitrite. Either of the two sensor-transmitter proteins, NarX and NarQ, can activate the response-regulator proteins, NarL and NarP, which in turn are able to bind at their respective DNA regulatory sites to modulate gene expression. NarX contains a conserved 17 amino acid sequence, designated the ‘P-box’ element, that is essential for nitrate sensing. In this study we characterize narQ mutants that also confer altered nitrate control of NarL-dependent nitrate reductase (narGHJI ) and fumarate reductase (frdABCD) gene expression. While some narQ mutations cause the constitutive activation or repression of reporter-gene expression even when the cells are grown in the absence of the nitrate signal (i.e. a ‘locked-on’ phenotype), other mutations abolish nitrate-dependent control (i.e. a ‘locked-off’ phenotype). Interestingly the narQ (A42→T) and narQ (R50→Q) mutations along with the analogous narX18 (A46→T) and narX902 (R54→E) mutations also confer a ‘locked-on’ or a ‘locked-off’ phenotype in response to nitrite, the second environmental signal detected by NarQ and NarX. Furthermore, these narQ and narX mutations also affect NarP-dependent gene regulation of nitrite reductase (nrfABCDEFG) and aeg-46.5 gene expression in response to nitrite. We therefore propose that the NarQ sensor-transmitter protein also detects nitrate and nitrite in the periplasmic space via its periplasmic domain. A signal transduction model, which we previously proposed for NarX, is now extended to NarQ, in which a nitrate- or nitrite-detection event in the periplasmic region of the cell is followed by a signal transduction event through the inner membrane to the cytoplasmic domain of NarQ and NarX proteins to modulate their protein kinase/phosphatase activities.  相似文献   

5.
6.
The membrane-bound sensor protein kinase VirA of Agrobacterium tumefaciens detects plant phenolic substances, which induce expression of vir genes that are essential for the formation of the crown gall tumor. VirA also responds to specific monosaccharides, which enhance vir expression. These sugars are sensed by the periplasmic domain of VirA that includes the region homologous to the chemoreceptor Trg, and the phenolics are thought to be detected by a part of the cytoplasmic linker domain, while the second transmembrane domain (TM2) is reported to be nonessential. To define regions of VirA that are essential for signal sensing, we introduced base-substitution and deletion mutations into coding regions that are conserved among the respective domains of VirA proteins from various Agrobacterium strains, and examined the effects of these mutations on vir induction and tumorigenicity. The results show that the Trg-homologous region in the periplasmic domain is not essential for the enhancement of vir gene expression by sugars. Most mutations in the TM2 domain also failed to influence enhancement by sugars and reduced the level of vir induction, but a mutation in the TM2 region adjacent to the cytoplasmic linker abolished induction of the vir genes. In the linker domain, sites essential for vir induction by phenolics were scattered over the entire region. We propose that a topological feature formed by the linker domain and at least part of the TM2 may be crucial for activation of a membrane-anchored VirA protein. Complementation analysis with two different VirA mutants suggested that intermolecular phosphorylation between VirA molecules occurs in vivo, and that two intact periplasmic regions in a VirA dimer are required for the enhancement of vir induction by sugars. Received: 14 December 1999 / Accepted: 10 April 2000  相似文献   

7.
Three non-capsid, phage-encoded proteins, pI, pIV and pXI, are required for assembly of the filamentous bacteriophage at the envelope of Escherichia coli. pIV forms the outer membrane component of the assembly site, and pI and pXI are predicted to form the cytoplasmic membrane component. pXI is the result of an in-frame internal translational initiation event in gene I and is identical with the carboxyl-terminal third of pI in amino acid sequence, membrane localization and topology. The two proteins share a cytoplasmic domain predicted to be an amphipathic helix, a transmembrane domain, and a periplasmic domain. By mutating the initiation site for pXI, a phage was made that produced only pI and was shown to absolutely require functional plasmid-encoded pXI for growth. Further mutational analysis was done to examine the functional determinants of the amphipathic helix and periplasmic domains of the pI and pXI proteins. The results show that the amphipathic helix region is very important for pI function but not for pXI function. Mutational analysis of the periplasmic domains of pI and pXI implies that these domains also perform separate functions, and suggests that the interaction between pI and pIV in the periplasm is critical for assembly. The results are discussed with regard to the separate roles that the pI and pXI proteins play in the overall process of phage assembly.  相似文献   

8.
Septation in Escherichia coli requires several gene products. One of these, FtsQ, is a simple bitopic membrane protein with a short cytoplasmic N terminus, a membrane-spanning segment, and a periplasmic domain. We have constructed a merodiploid strain that expresses both FtsQ and the fusion protein green fluorescent protein (GFP)-FtsQ from single-copy chromosomal genes. The gfp-ftsQ gene complements a null mutation in ftsQ. Fluorescence microscopy revealed that GFP-FtsQ localizes to the division site. Replacing the cytoplasmic and transmembrane domains of FtsQ with alternative membrane anchors did not prevent the localization of the GFP fusion protein, while replacing the periplasmic domain did, suggesting that the periplasmic domain is necessary and sufficient for septal targeting. GFP-FtsQ localization to the septum depended on the cell division proteins FtsZ and FtsA, which are cytoplasmic, but not on FtsL and FtsI, which are bitopic membrane proteins with comparatively large periplasmic domains. In addition, the septal localization of ZipA apparently did not require functional FtsQ. Our results indicate that FtsQ is an intermediate recruit to the division site.  相似文献   

9.
In Escherichia coli , EnvZ senses changes in the osmotic conditions of the growth environment and controls the phosphorylated state of the regulatory protein, OmpR. OmpR-phosphate regulates the expression of the porin genes, ompF and ompC . To investigate the role of the periplasmic domain of EnvZ in sensing of osmolarity signals, portions of this domain were deleted. Cells containing the EnvZ mutant proteins were able to regulate normally the production of OmpF and OmpC in response to changes in osmolarity. The periplasmic domain of EnvZ was also replaced with the non-homologous periplasmic domain of the histidine kinase PhoR of Bacillus subtilis . Osmoregulation of OmpF and OmpC production in cells containing the PhoR–EnvZ hybrid protein was indistinguishable from that in cells containing wild-type EnvZ. Identical results were obtained with an envZ – pta/ack strain, which could not synthesize acetyl phosphate. Thus, acetyl phosphate was not involved in the regulation of ompF and ompC observed in this study. These results indicate that the periplasmic domain of EnvZ is not essential for sensing of osmolarity signals.  相似文献   

10.
Membrane proteins represent a significant fraction of all genomes and play key roles in many aspects of biology, but their structural analysis has been hampered by difficulties in large-scale production and crystallisation. To overcome the first of these hurdles, we present here a systematic approach for expression and affinity-tagging which takes into account transmembrane topology. Using a set of bacterial transporters with known topologies, we tested the efficacy of a panel of conventional and Gateway? recombinational cloning vectors designed for protein expression under the control of the tac promoter, and for the addition of differing N- and C-terminal affinity tags. For transporters in which both termini are cytoplasmic, C-terminal oligohistidine tagging by recombinational cloning typically yielded functional protein at levels equivalent to or greater than those achieved by conventional cloning. In contrast, it was not effective for examples of the substantial minority of proteins that have one or both termini located on the periplasmic side of the membrane, possibly because of impairment of membrane insertion by the tag and/or att-site-encoded sequences. However, fusion either of an oligohistidine tag to cytoplasmic (but not periplasmic) termini, or of a Strep-tag II peptide to periplasmic termini using conventional cloning vectors did not interfere with membrane insertion, enabling high-level expression of such proteins. In conjunction with use of a C-terminal Lumio? fluorescence tag, which we found to be compatible with both periplasmic and cytoplasmic locations, these findings offer a system for strategic planning of construct design for high throughput expression of membrane proteins for structural genomics projects.  相似文献   

11.
ExbB acts as a chaperone-like protein to stabilize TonB in the cytoplasm   总被引:19,自引:5,他引:14  
The TonB protein is required to transduce energy from the cytoplasmic membrane to outer membrane transport proteins of Gram-negative bacteria. Two accessory proteins, ExbB and ExbD, are required for TonB function and it has been suggested that TonB and ExbBD form a complex in the membrane. In this paper we demonstrate that there are two spatially distinct, functional interactions between ExbBD and TonB. First, there is an interaction between ExbBD and the N-terminal signal-like peptide of TonB, probabiy the formation of a stable complex in the membrane. Second, ExbB interacts with TonB in the cytoplasm. This interaction involves the domain of TonB that is normally periplasmic. Thus, this is a transient interaction which occurs during the synthesis and/or localization of TonB, implying a chaperone-like role for ExbB. The transmembrane topology of ExbB was shown to be consistent with this role.  相似文献   

12.
Alkaline phosphatase fusions were used to study the membrane topology of DcrA, a protein of 668 amino acids fromDesulfovibrio vulgaris Hildenborough, which has two potentially membrane-spanning hydrophobic sequences at residues 11 to 29 and 188 to 207. A fusion at amino acid residue 170 in the proposed periplasmic domain exhibited high alkaline phosphatase activity, while low activity was observed for a fusion at amino acid residue 284 in the proposed cytoplasmic domain. The data support a topological model for DcrA similar to that of the methyl-accepting chemotaxis proteins of the enteric bacteria.  相似文献   

13.
In all species of the genus Shewanella, the redox-sensing Arc two-component system consists of the response regulator ArcA, the sensor kinase ArcS, and the separate phosphotransfer protein HptA. Compared to its counterpart ArcB in Escherichia coli, ArcS has a significantly different domain structure. Resequencing and reannotation revealed that in the N-terminal part, ArcS possesses a periplasmic CaChe-sensing domain bracketed by two transmembrane domains and, moreover, that ArcS has two cytoplasmic PAS-sensing domains and two receiver domains, compared to a single one of each in ArcB. Here, we used a combination of in vitro phosphotransfer studies on purified proteins and phenotypic in vivo mutant analysis to determine the roles of the different domains in ArcS function. The analysis revealed that phosphotransfer occurs from and toward the response regulator ArcA and involves mainly the C-terminal RecII domain. However, RecI also can receive a phosphate from HptA. In addition, the PAS-II domain, located upstream of the histidine kinase domain, is crucial for function. The results support a model in which phosphorylation of RecI stimulates histidine kinase activity of ArcS in order to maintain an appropriate level of phosphorylated ArcA according to environmental conditions. In addition, the study reveals some fundamental mechanistic differences between ArcS/HptA and ArcB with respect to signal perception and phosphotransfer despite functional conservation of the Arc system in Shewanella and E. coli.  相似文献   

14.
Assembly of the divisome in Escherichia coli occurs in two temporally distinct steps. First, FtsZ filaments attached to the membrane through interaction with FtsA and ZipA coalesce into a Z ring at midcell. Then, additional proteins are recruited to the Z ring in a hierarchical manner to form a complete divisome, activated by the arrival of FtsN. Recently, we proposed that the interaction of FtsA with itself competes with its ability to recruit downstream division proteins (both require the IC domain of FtsA) and ZipA's essential function is to promote the formation of FtsA monomers. Here, we tested whether overexpression of a downstream division protein could make ZipA dispensable, presumably by shifting the FtsA equilibrium to monomers. Only overexpression of FtsN bypassed ZipA and a conserved motif in the cytoplasmic domain of FtsN was required for both the bypass and interaction with FtsA. Also, this cytoplasmic motif had to be linked to the periplasmic E domain of FtsN to bypass ZipA, indicating that linkage of FtsA to periplasmic components of the divisome through FtsN was essential under these conditions. These results are used to further elaborate our model for the role of FtsA in recruiting downstream division proteins.  相似文献   

15.
The 17 kb kps gene cluster of Escherichia coli K1, which encodes the information required for synthesis, assembly and translocation of the polysialic acid capsule of E. coli K1, is divided into three functional regions. Region 3 contains two genes, kpsM and kpsT, essential for the transport of capsule polymer across the cytoplasmic membrane. The hydrophobicity profile of KpsM suggests that it is an integral membrane protein while KpsT contains a consensus ATP-binding site. KpsM and KpsT belong to the ATP-binding cassette (ABC) superfamily of membrane transporters. In this study, we investigate the topology of KpsM within the cytoplasmic membrane using β-lactamase fusions and alkaline phosphatase sandwich fusions. Our analysis provides evidence for a model of KpsM having six membrane-spanning regions, with the N- and C-terminal domains facing the cytoplasm, and a short domain within the third periplasmic loop, which we refer to as the SV–SVI linker localizing in the membrane. Protease digestion studies are consistent with regions of KpsM exposed to the periplasmic space. In vivo cross-linking studies provide support for dimerization of KpsM within the cytoplasmic membrane. Linker-insertion and site-directed mutagenesis define the N-terminus, the first cytoplasmic loop, and the SV-SVI linker as regions that are important for the function of KpsM in K1 polymer transport.  相似文献   

16.
PhoP–PhoR, one of three two-component systems known to be required to regulate the pho regulon in Bacillus subtilis , directly regulates the alkaline phosphatase genes that are used as pho reporters. Biochemical studies showed that B. subtilis PhoR, purified from Escherichia coli , was autophosphorylated in vitro in the presence of ATP. Phosphorylated PhoR showed stability under basic conditions but not acidic conditions, indicating that the phosphorylation probably occurs on a conserved histidine residue. Phospho–PhoR phosphorylated its cognate response regulator, PhoP in vitro . B. subtilis phoR was placed in the Bacillus chromosome under the control of the P spac promoter, which is IPTG inducible. The wild-type phoR , under either native promoter or P spac promoter with IPTG induction, resulted in a similar level of alkaline phosphatase production. Under high phosphate conditions, strains containing wild-type phoR , or phoR mutant gene products that lacked either the periplasmic domain, or both N-terminal transmembrane PhoR sequences or various extended N-terminal sequences, showed no significant APase production. Under phosphate starvation conditions, in the presence of IPTG, all strains containing mutated phoR genes showed alkaline phosphatase induction patterns similar to that of the wild-type strain, although the fully induced level was lower in the mutants. The decrease in total alkaline phosphatase production in these mutant strains can be compensated completely or partially by increasing the copy number of the mutant phoR gene. These in vivo results suggest that the C-terminal kinase domain of PhoR is sufficient for the induction of alkaline phosphatase expression under phosphate-limited conditions, and that the regulation for repression of APase under phosphate-replete conditions remains intact.  相似文献   

17.
Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental stimuli by autophosphorylation and phospho-transfer. HK typically contains a periplasmic sensor domain that regulates the cytoplasmic kinase domain through a conserved cytoplasmic linker. How signal is transduced from the ligand-binding site across the membrane barrier remains unclear. Here, we analyse two linker regions of a typical HK, DctB. One region connects the first transmembrane helix with the periplasmic Per-ARNT-Sim domains, while the other one connects the second transmembrane helix with the cytoplasmic kinase domains. We identify a leucine residue in the first linker region to be essential for the signal transduction and for maintaining the delicate balance of the dimeric interface, which is key to its activities. We also show that the other linker, belonging to the S-helix coiled-coil family, plays essential roles in signal transduction inside the cell. Furthermore, by combining mutations with opposing activities in the two regions, we show that these two signalling transduction elements are integrated to produce a combined effect on the final activity of DctB.  相似文献   

18.
Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner-switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha-ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes.  相似文献   

19.
Lysobacter enzymogenes, a member of Xanthomonadaceae, is a promising tool to control crop-destroying fungal pathogens. One of its key antifungal virulence factors is the type IV pili that are required for twitching motility. Transposon mutagenesis of L. enzymogenes revealed that the production of type IV pili required the presence of the Le2152 gene, which encodes an AlgC-type phosphomannomutase/phosphoglucomutase (PMM). However, in addition to the cytoplasmic PMM domain, the Le2152 gene product contains a ~200-aa N-terminal periplasmic domain that is anchored in the membrane by two transmembrane segments and belongs to the dCache superfamily of periplasmic sensor domains. Sequence analysis identified similar membrane-anchored PMMs, encoded in conserved coaBC-dut-algC gene clusters, in a variety of gammaproteobacteria, either as the sole PMM gene in the entire genome or in addition to the gene encoding the stand-alone enzymatic domain. Previously overlooked N-terminal periplasmic sensor domains were detected in the well-characterized PMMs of Pseudomonas aeruginosa and Xanthomonas campestris, albeit not in the enzymes from Pseudomonas fluorescens, Pseudomonas putida or Azotobacter vinelandii. It appears that after the initial cloning of the enzymatically active soluble part of P. aeruginosa AlgC in 1991, all subsequent studies utilized N-terminally truncated open reading frames. The N-terminal dCache sensor domain of AlgC is predicted to modulate the PMM activity of the cytoplasmic domain in response to as yet unidentified environmental signal(s). AlgC-like membrane-bound PMMs appear to comprise yet another environmental signalling system that regulates the production of type IV pili and potentially other systems in certain gammaproteobacteria.  相似文献   

20.
Bacteria are equipped with two-component systems to cope with environmental changes, and auxiliary proteins provide response to additional stimuli. The Cpx two-component system is the global modulator of cell envelope stress in Gram-negative bacteria that integrates very different signals and consists of the kinase CpxA, the regulator CpxR, and the dual function auxiliary protein CpxP. CpxP both inhibits activation of CpxA and is indispensable for the quality control system of P pili that are crucial for uropathogenic Escherichia coli during kidney colonization. How these two essential biological functions of CpxP are linked is not known. Here, we report the crystal structure of CpxP at 1.45 Å resolution with two monomers being interdigitated like “left hands” forming a cap-shaped dimer. Our combined structural and functional studies suggest that CpxP inhibits the kinase CpxA through direct interaction between its concave polar surface and the negatively charged sensor domain on CpxA. Moreover, an extended hydrophobic cleft on the convex surface suggests a potent substrate recognition site for misfolded pilus subunits. Altogether, the structural details of CpxP provide a first insight how a periplasmic two-component system inhibitor blocks its cognate kinase and is released from it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号