首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The aim of this investigation was to identify the encoding sequence of vitellogenin receptor gene (vtgr), and its expression during the oogenesis in the spotted ray, Torpedo marmorata, in different phases of reproductive cycle. From an ovarian cDNA of vitellogenic female, we obtained a fragment of 581?bp, which corresponds to a partial sequence encoding the vitellogenin receptor (VTGR) in Torpedo (accession number: gi/193244760). This sequence shows a high identity with the VTGR of other vertebrates, particularly Leucoraja erinacea (89% identity) and Squalus acanthias (84% identity). We also showed that vtgr mRNA expression in the ovary modifies during the oogenesis and throughout the reproductive cycle. Indeed, in immature females, whose ovary contains only previtellogenic follicles, vtgr mRNA occurred in the oocyte cortex as well as within intermediate and pyriform cells. In mature females, whose ovary contains pre- and vitellogenic follicles, vtgr mRNA was detectable not only in the oocyte cortex and in intermediate and pyriform cells but also in small follicle cells present in the follicular epithelium of vitellogenic follicles. In ovulating females, that, as pregnant ones, show pre-and vitellogenic follicles, vtgr mRNA was evident in the oocyte cortex only, whereas in pregnant females, no vtgr mRNA was evident. The role of VTGR in the control of Torpedo vitellogenesis is discussed.  相似文献   

4.
5.
6.
Environmental Biology of Fishes - This work presents new information on the morphological aspects, reproductive biology and diet of the marbled electric ray Torpedo marmorata Risso 1810, in the...  相似文献   

7.
8.
Newly born and neonate Torpedo ocellata were obtained from gravid females caught during the autumn off the Mediterranean coast of Israel. The young torpedos, which weighed about 11 g, were fed with live Blennius pavo Risso, and doubled their weight in about 4 months. The behaviour of the torpedo during feeding was examined and photographed. When attacking a fish, the torpedo emerges from being buried in the sand and assaults the approaching prey. First, the prey is trapped under the torpedo and then directed towards the ray's mouth by its body movements. Newborn and neonate torpedos are able to discharge their electric organ. The amplitude of the discharge of one day-old fish is approximately 4 V. It increases dramatically during the first three weeks of life to 20 V, reaching an asymptotic level of about 26 V, by the end of the fourth month.  相似文献   

9.
Summary— A major antigen of the brush border membrane of Torpedo marmorata kidney was identified and purified by immunoprecipitation. The sequence of its 18 N terminal amino acids was determined and found to be very similar to that of mammalian aminopeptidase N (EC 3.4.11.2). Indeed aminopeptidase N activity was efficiently immunoprecipitated by monoclonal antibody 180K1. The purified antigen gives a broad band at 180 kDa after SDS-gel electrophoresis, which, after treatment by endoglycosidase F, is converted to a thinner band at 140 kDa. This antigen is therefore heavily glycosylated. Depending on solubilization conditions, both the antigen and peptidase activity were recovered either as a broad peak with a sedimentation coefficient of 18S (2% CHAPS) or as a single peak of 7.8S (1% CHAPS plus 0.2 % C12E9), showing that Torpedo aminopeptidase N behaves as an oligomer stabilized by hydrophobic interactions, easily converted into a 160 kDa monomer. The antigen is highly concentrated in the apical membrane of proximal tubule epithelial cells (600 gold particles/μm2 of brush border membrane) whereas no labeling could be detected in other cell types or in other membranes of the same cells (basolatéral membranes, vacuoles or vesicles). Monoclonal antibodies prepared here will be useful tools for further functional and structural studies of Torpedo kidney aminopeptidase N.  相似文献   

10.
The structural organisation of the nucleolar apparatus during oogenesis of the spotted ray Torpedo marmorata was investigated. The observations showed that unlike other cartilaginous fishes, in T. marmorata the nucleolar apparatus was always represented by one or two conspicuous nucleoli, whose organization significantly changed during oocyte development. In the smallest follicles (follicles <300 μm in diameter) the nucleolus was made up of granular and fibrillar components, and actively incorporated 3H uridine; later it becomes more and more electron‐dense so in follicles of 400 μm in diameter its components and 3H uridine incorporation were no longer evident. These results indicate that in T. marmorata the nucleolar apparatus significantly changes and undergoes a possible impairment in rRNA synthesis. After nucleolus inactivation, the synthesis of rRNA may be substained by granulosa.  相似文献   

11.
The purified acetylcholine receptor of Torpedo marmorata has been characterized by sedimentation velocity measurements on dilute solutions using an ultracentrifuge and scanner. Several preparations were studied and all exhibited sedimentation coefficients in the vicinity of 24S. In a number of experiments the receptor could be resolved into two sedimenting boundaries of 18S and 26S, corresponding to minimum molecular weights of about 5 × 105 and 106, respectively. Additions of sodium dodecyl sulfate or Triton X-100 resulted in marked decreases in sedimentation coefficient, while treatment with Lubrol-WX had only a slight effect on the S values. Small changes in S20,w were produced by guanidine hydrochloride alone, although addition of dithiothreitol with 6 M guanidine hydrochloride resulted in an 8.8S component. Electrophoresis in sodium dodecyl sulfate gave one principal band with a molecular weight of 46,000.  相似文献   

12.
The muscle-type nicotinic receptor has two distinguishable acetylcholine binding sites at the alpha-gamma and alpha-delta subunit interfaces; alpha-conotoxins can bind them selectively. Moreover, we previously reported that alpha-conotoxin MI can interact with Torpedo californica and Torpedo marmorata receptors showing that conotoxins can also detect receptors from different species of the same genus [L. Cortez, S.G. del Canto, F. Testai, M.B. de Jiménez Bonino, Conotoxin MI inhibits the acetylcholine binding site of the Torpedo marmorata receptor, Biochem. Biophys. Res. Commun. 295 (2002) 791-795]. Herein, to identify T. marmorata receptor regions involved in alpha-conotoxin MI binding, a photoactivatable reagent was used and labeled sites were mapped by enzymatic proteolysis, MALDI-TOF-MS and Edman degradation. alpha-Conotoxin MI binding determinants were found and studies revealed a second binding motif at the alpha/delta interface. A proposal for receptor-toxin interaction is discussed based on experimental results and docking studies.  相似文献   

13.
This report describes an unusual morphology of annulate lamellae (AL) in the hepatocytes of Torpedo marmorata Risso. These Als and fragments are detected amidst the main glycogen and lipid deposits. AL cisterns are circumscribed by parts of the smooth endoplasmic reticulum. Based on the finding of these unusual annular ALs, accompanied by other subcellular lesions such as a number of membranous whorls and altered mitochondria. These findings can concur and support other authors' observations suggesting that these adult hepatocytes transient changes reflect that this species could be exposed to local, natural or likely human coastal seabed pollutants.  相似文献   

14.
R Haklai  Y Kloog 《Biochemistry》1987,26(14):4200-4206
Posttranslational modification of proteins by the enzyme protein carboxyl methyltransferase (PCM) has been associated with a variety of cellular functions. A prerequisite for the understanding of cellular mechanisms associated with PCM is the characterization of purified PCMs from different tissues. We describe here the purification and characterization of PCM from the electric organ of Torpedo ocellata. The enzyme was purified to homogeneity by ion-exchange chromatography and ammonium sulfate precipitation, followed by chromatography on Sephadex G-100 and hydroxylapatite columns. When visualized by silver staining, the 700-fold-purified PCM exhibited a single band on sodium dodecyl sulfate-polyacrylamide gels, corresponding to a polypeptide of Mr 29,000. The molecular weight of the nondenatured enzyme (as determined by rechromatography on Sephadex G-100 column) was also 29,000, suggesting that the enzyme is a monomer. Two isoelectric forms of PCM (pI = 6.1 and pI = 6.4) were detected in the purified enzyme preparation. The enzyme methylates various exogenous and endogenous proteins, including the acetylcholine receptor. Of the four different polypeptides of the acetylcholine receptor, the gamma and beta polypeptides were selectively methylated by the purified PCM. Purified Torpedo PCM is highly sensitive to sulfhydryl reagents. The competitive inhibitor of PCM S-adenosyl-L-homocysteine (AdoHcy) protected the enzyme from inactivation by sulfhydryl reagents, suggesting the existence of a cysteine residue at the active site of the enzyme. The purified PCM has a low affinity toward DEAE-cellulose and toward AdoHcy-agarose. This property, as well as the relatively high molecular weight and the marked sensitivity to sulfhydryl reagents, distinguishes between the electric organ PCM and analogous enzymes of mammalian tissues.  相似文献   

15.
We analyzed the molecular species composition of the glycosylphosphatidylinositol (GPI) anchor of Torpedo marmorata acetylcholinesterase (AChE) and compared it to that of the membrane phosphatidylinositol (PI) as well as the other major phospholipid classes of T. marmorata electrocytes. Purified amphiphilic AChE was treated with PI-specific phospholipase C in order to release the diradylglycerol moiety from the membrane anchoring domain. Subsequently, the diradylglycerols were derivatized into their diradylglycer-obenzoates and separated into subclasses (diacyl, alkylacyl, and alk-1-enylacyl types). The molecular species within each subclass were separated and quantitated by high performance liquid chromatography and UV detection and directly introduced through the thermospray interface into a mass spectrometer for identification. The PI moiety of the GPI anchor of AChE consisted exclusively of diacyl molecular species. Over 85% of the molecular species were composed of palmitoyl (16:0), stearoyl (18:0), and oleoyl (18:1) fatty acyl chains in the sn-1 and sn-2 positions. Less than 5% of the molecular species of the GPI anchor contained polyunsaturated fatty acyl chains, as compared to more than 70% of the diacyl molecular species of the PI from electrocyte membranes. Since the GPI anchors of AChE from both human and bovine erythrocytes contain alkylacyl molecular species of PI (Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T. L. (1988) J. Biol. Chem. 263, 18766-18775), our results on AChE from Torpedo demonstrate that the composition of the PI moiety of the GPI anchor of a protein is not characteristic for that protein but may vary between species.  相似文献   

16.
17.
Membrane fragments rich in cholinergic (nicotinic) receptor protein were purified from the electric organ of Torpedo marmorata. Their lipid composition is essentially characterized by the prominence of cholesterol, phosphatidylethanolamine and phosphatidylcholine, long-chain fatty acyl constituents, and the absence of sphingomyelin. Solubilised receptor was purified from these fragments and the concentration of sodium cholate lowered by dialysis to 0.01% (w/v). When this preparation was injected under a lipid monolayer, an increase of surface pressure developed, which was not observed with the detergent alone nor in the absence of lipid film. When covalently radiolabelled receptor preparations were injected at a constant surface pressure the radioactivity recovered with the film was proportional to the increase in area. It is concluded that the pressure or area increases are due to the penetration of the cholinergic receptor protein into the lipid film. Incorporation experiments into films formed from various pure lipids showed that the protein interacts more readily with cholesterol than with ergosterol, phosphatidylcholine, or other phospholipids. Its affinity is also higher for long-chain phosphatidylcholines than for short-chain ones. The degree of unsaturation and fluidity of the 3-sn-phosphatidylcholine (lecithin) films are of secondary importance. Parallel experiments with covalently and non-covalently labelled receptor preparations showed that part of the protein recovered with the film lost its alpha-toxin binding ability during the penetration. Similar data were obtained with the receptor purified from Electrophorus electricus electric organ.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号