首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of TSH receptor (TSHr) mRNA accumulation has been investigated in canine thyrocytes in primary culture by in situ hybridization experiments; the effects of the mitogenic thyrotropin (TSH), epidermal growth factor (EGF), and phorbol ester TPA (12-O-tetradecanoylphorbol-13-acetate) have been compared. Apart from their mitogenic action, TSH enhances, while EGF and phorbol ester inhibit, the expression of differentiation. The TSHr gene was transcribed in almost all the cells cultured in control conditions (serum free medium supplemented with insulin). Addition of TSH slightly upregulated (twofold) the expression (mRNA) of the TSHr gene. This positive effect was maintained for 20 and 44 h of treatment. EGF and TPA reduced transiently the TSHr mRNA accumulation but did not suppress it. In these different conditions, the TSHr mRNA was homogeneously distributed within the cell population. This contrasted strongly with the effects of TSH, EGF, and TPA on the expression of the thyroglobulin gene, a prominent marker of thyroid cell differentiation: in this case, the regulation was much tighter (high range of stimulation by TSH, strong inhibition by EGF, and suppression of Tg gene expression by TPA) and displayed a great variability of the level of individual cellular response. The fact that the TSHr gene was little modulated and remained expressed regardless of the treatment may reflect the physiological role of the receptor which is the main connection of the thyrocyte to the regulation network.  相似文献   

2.
In canine thyrocytes in primary culture, our previous studies have identified three mitogenic agents and pathways: thyrotropin (TSH) acting through cyclic AMP (cAMP), EGF and its receptor tyrosine protein kinase, and the phorbol esters that stimulate protein kinase C. TSH enhances, while EGF and phorbol esters inhibit, the expression of differentiation. Given that growth and differentiation expression are often considered as mutually exclusive activities of the cells, it was conceivable that the differentiating action of TSH was restricted to noncycling (Go) cells, while the inhibition of the differentiation expression by EGF and phorbol esters only concerned proliferating cells. Therefore, the capacity to express the thyroglobulin (Tg) gene, the most prominent marker of differentiation in thyrocytes, was studied in proliferative cells (with insulin) and in quiescent cells (without insulin). Using cRNA in situ hybridization, we observed that TSH (and, to a lesser extent, insulin and insulin-like growth factor I) restored or maintained the expression of the Tg gene. Without these hormones, the Tg mRNA content became undetectable in most of the cells. EGF and 12-0-tetradecanoyl phorbol-13-acetate (TPA) inhibited the Tg mRNA accumulation induced by TSH (and/or insulin). Most of the cells (up to 90%) responded to both TSH and EGF. Nevertheless, the range of individual response was quite variable. The effects of TSH and EGF on differentiation expression were not dependent on insulin and can therefore be dissociated from their mitogenic effects. Cell cycling did not affect the induction of Tg gene. Indeed, the same cell distribution of Tg mRNA content was observed in quiescent cells stimulated by TSH alone, or in cells approximately 50% of which had performed one mitotic cycle in response to TSH + insulin. Moreover, after proliferation in "dedifferentiating" conditions (EGF + serum + insulin), thyrocytes had acquired a fusiform fibroblast-like morphology, and responded to TSH by regaining a characteristic epithelial shape and high Tg mRNA content. 32 h after the replacement of EGF by TSH, cells in mitosis presented the same distribution of the Tg mRNA content as the rest of the cell population. This implies that cell cycling (at least 27 h, as previously shown) did not affect the induction of the Tg gene which is clearly detectable after a time lag of at least 24 h. The data unequivocally show that the reexpression of differentiation and proliferative activity are separate but fully compatible processes when induced by cAMP in thyrocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
Regulation of thyrotropin (TSH) receptor (TSHr) mRNA accumulation as compared with two other thyroid differentiation markers (thyroglobulin and thyroperoxidase (TPO] has been investigated by Northern blot. In dogs in vivo, chronic stimulation of the thyroid TSHr mRNA although it increased the levels of thyroglobulin and TPO mRNA. In dogs treated with thyroxin, the quiescent thyroids expressed normal levels of TSHr and TPO mRNA but depressed levels of thyroglobulin mRNA. In primary cultures of dog thyrocytes, dedifferentiation of the cells by treatment with epidermal growth factor or 12-O-tetradecanoylphorbol-13-acetate led to decreased TSHr mRNA levels and nearly abolished thyroglobulin and TPO gene expression. However, TSHr mRNA was always present, compatible with the fact that these cells, when treated by TSH, reexpress differentiation. Treatment of the cells with TSH or forskolin transiently increased the TSHr mRNA level after 20 h, an effect inhibited by cycloheximide. This up-regulation was confirmed at the protein level: forskolin-treated cells showed an enhanced cAMP response to TSH and an increased binding of labeled TSH to their membranes. Long term TSH treatment led to a slight down-regulation of TSHr mRNA in dog thyrocytes, but in human thyroid cells no marked down-regulation was observed.  相似文献   

5.
Regulation of VL30 gene expression by activators of protein kinase C   总被引:9,自引:0,他引:9  
The mouse genome contains a retrovirus-like sequence, designated VL30, which is expressed at high levels in transformed cells and which can be induced by exogenously supplied epidermal growth factor (EGF). Binding of EGF to the EGF receptor produces changes in intracellular calcium levels and phospholipase activity which indirectly lead to activation of protein kinase C. We treated AKR-2B cells, Swiss 3T3 cells, and the 3T3 variants NR6 (EGF receptorless) and TNR9 (phorbol ester nonresponsive) with various phorbol ester tumor promoters and with the synthetic diacylglycerol sn-1,2-dioctanoylglycerol. Tumor-promoting phorbol esters (e.g. 12-O-tetradecanoyl phorbol acetate (TPA] increased the level of VL30 expression. Stimulation with either TPA or EGF produced a similar time course of VL30 expression. TPA induced VL30 expression in the EGF-receptorless NR6 cell line, indicating that neither EGF ligand-receptor binding nor phosphorylation of the EGF receptor was required for induction of VL30 expression. Protein synthesis was not required for the TPA-mediated increase in VL30 expression, as pretreatment with cycloheximide did not block or reduce the TPA effect. VL30 expression was also stimulated by treatment with sn-1,2-dioctanoylglycerol, an analog of a probable endogenous activator of protein kinase C. These results suggest that activation of protein kinase C plays a direct role in regulating VL30 expression.  相似文献   

6.
The tumor promoter phorbol ester (TPA) modulates the binding affinity and the mitogenic capacity of the epidermal growth factor (EGF) receptor. Moreover, TPA-induced kinase C phosphorylation occurs mainly on Thr-654 of the EGF receptor, suggesting that the phosphorylation state of this residue regulates ligand-binding affinity and kinase activity of the EGF receptor. To examine the role of this residue, we prepared a Tyr-654 EGF receptor cDNA construct by in vitro site-directed mutagenesis. Like the wild-type receptor, the mutant receptor exhibited typical high- and low-affinity binding sites when expressed on the surface of NIH 3T3 cells. Moreover, TPA regulated the affinity of both wild-type and mutant receptors and stimulated receptor phosphorylation of serine and threonine residues other than Thr-654. The addition of TPA to NIH 3T3 cells expressing a wild-type human EGF receptor blocked the mitogenic capacity of EGF. However, this inhibition did not occur in cells expressing the Tyr-654 EGF receptor mutant. In the latter cells, EGF was able to stimulate DNA synthesis even in the presence of inhibitory concentrations of TPA. While phosphorylation of sites other than Thr-654 may regulate ligand-binding affinity, the phosphorylation of Thr-654 by kinase C appears to provide a negative control mechanism for EGF-induced mitogenesis in mouse NIH 3T3 fibroblasts.  相似文献   

7.
8.
The expressions of the protooncogenes c-jun and jun D have been investigated in dog thyrocytes in a primary culture whose proliferation is stimulated by three distinct intracellular signaling pathways (1) the thyrotropin (TSH) or forskolin-cyclic-AMP-mediated cascade; (2) the protein kinase C pathway activated by diacylglycerol (DAG) and phorbol esters (TPA); (3) a protein tyrosine kinase system activated by epidermal growth factor (EGF). While the first cascade is compatible with the differentiated state of the cell, the two latter pathways induce dedifferentiation. Following the stimulation by TPA or EGF, the expression of c-jun was increased and the expression of jun D was faintly increased. Both expressions are superinduced in the presence of cycloheximide as in mitogenically stimulated fibroblasts but, in the presence of cycloheximide alone, the expressions of c-jun and jun D are clearly unstable with time. This indicates that cycloheximide controls should be included at all time points examined in such experiments. Increasing intracellular concentrations of cyclic-AMP by forskolin or TSH was followed by an inhibition of the expression of c-jun. This inhibition was independent of protein synthesis. Similarly, the TPA or EGF stimulation of c-jun expression was also inhibited by TSH or forskolin, as in fibroblasts in which cyclic-AMP inhibits proliferation. Our results show that the expression of c-jun is not universally correlated with the stimulation of cell proliferation. The stimulation of c-jun expression is not common between the three mitogenic pathways. It thus represents another of the very different responses elicited by the cyclic-AMP cascade as compared to the more studied tyrosine kinase and protein kinase C mitogenic pathways.  相似文献   

9.
10.
11.
Downregulation of protein kinase C delta (PKC delta) by treatment with the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) transforms cells that overexpress the non-receptor class tyrosine kinase c-Src (Z. Lu et al., Mol. Cell. Biol. 17:3418-3428, 1997). We extended these studies to cells overexpressing a receptor class tyrosine kinase, the epidermal growth factor (EGF) receptor (EGFR cells); like c-Src, the EGF receptor is overexpressed in several human tumors. In contrast with expectations, downregulation of PKC isoforms with TPA did not transform the EGFR cells; however, treatment with EGF did transform these cells. Since TPA downregulates all phorbol ester-responsive PKC isoforms, we examined the effects of PKC delta- and PKC alpha-specific inhibitors and the expression of dominant negative mutants for both PKC delta and alpha. Consistent with a tumor-suppressing function for PKC delta, the PKC delta-specific inhibitor rottlerin and a dominant negative PKC delta mutant transformed the EGFR cells in the absence of EGF. In contrast, the PKC alpha-specific inhibitor Go6976 and expression of a dominant negative PKC alpha mutant blocked the transformed phenotype induced by both EGF and PKC delta inhibition. Interestingly, both rottlerin and EGF induced substantial increases in phospholipase D (PLD) activity, which is commonly elevated in response to mitogenic stimuli. The elevation of PLD activity in response to inhibiting PKC delta, like transformation, was dependent upon PKC alpha and restricted to the EGFR cells. These data demonstrate that PKC isoforms alpha and delta have antagonistic effects on both transformation and PLD activity and further support a tumor suppressor role for PKC delta that may be mediated by suppression of tyrosine kinase-dependent increases in PLD activity.  相似文献   

12.
13.
Both thyrotropin (TSH) and epidermal growth factor (EGF) are potent mitogenic agents when added to dog thyroid cells in primary culture [Roger, P. P. and Dumont, J. E. (1984) Mol. Cell. Endocrinol. 36, 79-93]. The concomitant effect of these agents on the differentiation state of the cells was appreciated using cell morphology, iodide trapping, thyroglobulin synthesis and cytoplasmic thyroglobulin mRNA content as markers. Together with previous results [Mol. Cell. Endocrinol. 36, 79-93 (1984)] it is shown that cells cultured in the continuous presence of TSH maintain all the parameters at a near normal level. In the absence of TSH, thyroglobulin mRNA decreased to very low, though still detectable levels. Addition of TSH restored subnormal mRNA levels. Culture of cells in the presence of EGF for 4-6 days affected profoundly their morphology, abolished iodide trapping and decreased thyroglobulin synthesis and cytoplasmic mRNA content to undetectable levels. Addition of TSH to cells previously exposed to EGF reversed the growth factor effect on all four indexes. The redifferentiating effect of TSH was well observed within 3-4 days and was mimicked by the adenylate cyclase activators, forskolin and cholera toxin. When administered simultaneously, TSH and EGF achieved an intermediate situation, EGF antagonizing partially the effect of TSH on the expression of thyroglobulin gene. Another growth factor, fibroblast growth factor, while promoting thyroid cell proliferation also, did not interfere at all with TSH effects on cytoplasmic thyroglobulin mRNA content. Our results make the dog thyroid cell in primary culture an appropriate model to study the mechanisms involved in gene regulation by cyclic AMP and growth factors.  相似文献   

14.
Epidermal growth factor (EGF) is produced in the ovary and influences proliferation of the malignant ovarian surface epithelium (OSE); yet its role in malignancy or in regulating the normal surface epithelium is unclear. In human OSE cells derived from primary cultures of normal tissue transfected with SV40 large T antigen (IOSE cells), EGF promoted survival but not proliferation. This survival effect was reversed by acute treatment with the phorbol ester, 12-0-tetradecanoyl-13-phorbol acetate (TPA) which alone markedly inhibited IOSE proliferation. We tested whether the activities of the mitogen-activated protein kinases (ERK1/2 and JNK1) varied in response to EGF, TPA, or combinations of these agonists and if the same treatments altered patterns of immediate early gene expression. Alone, EGF activated ERK1/2, increased and sustained levels of c-junmRNA, but had almost no effect on JNK1 activation. Conversely, PKC activation resulted in a rapid, but transient induction of c-fosRNA and of both kinases, JNK1 and ERK2. When combined, EGF and TPA further enhanced the phosphorylation of both enzymes despite inhibiting survival. Though JNKs and ERKs are thought to transduce opposing cellular responses, in IOSE cells, robust costimulation of the JNK and ERK pathways may redirect the survival message.  相似文献   

15.
Epidermal growth factor (EGF) stimulated the rapid accumulation of inositol trisphosphate in WB cells, a continuous line of rat hepatic epithelial cells. Since we previously had shown that EGF stimulates EGF receptor synthesis in these cells, we tested whether hormones that stimulate PtdIns(4,5)P2 hydrolysis would increase EGF receptor protein synthesis and mRNA levels. Epinephrine, angiotensin II, and [Arg8]vasopressin activate phospholipase C in WB cells as evidenced by the accumulation of the inositol phosphates, inositol monophosphate, inositol bisphosphate, and inositol trisphosphate. A 3-4-h treatment with each hormone also increased the rate of EGF receptor protein synthesis by 3-6-fold as assessed by immunoprecipitation of EGF receptor from [35S]methionine-labeled cells. Northern blot analyses of WB cell EGF receptor mRNA levels revealed that agents linked to the phosphoinositide signaling system increased receptor mRNA content within 1-2 h. A maximal increase of 3-7-fold was observed after a 3-h exposure to EGF and hormones. The phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), which activates protein kinase C also stimulated EGF receptor synthesis. Pretreatment of WB cells for 18 h with high concentrations of TPA "down-regulated" protein kinase C and blocked TPA-directed EGF receptor mRNA synthesis. In contrast, the effect of EGF on EGF receptor mRNA levels was not significantly decreased by TPA pretreatment. Epinephrine-induced increases in EGF receptor mRNA were reduced from 4- to 2-fold. Similarly, 18 h TPA pretreatment abolished the effect of TPA on EGF receptor protein synthesis but did not affect EGF-dependent EGF receptor protein synthesis. The 18-h TPA pretreatment diminished by 30-50% the induction of receptor protein synthesis by epinephrine or angiotensin II. We conclude that in WB cells EGF receptor synthesis can be regulated by EGF and other hormones that stimulate PtdIns(4,5)P2 hydrolysis. In these cells, EGF receptor synthesis appears to be regulated by several mechanism: one pathway is dependent upon EGF receptor activation and can operate independently of protein kinase C activation; another pathway is correlated with PtdIns(4,5)P2 hydrolysis and is dependent, at least in part, upon protein kinase C activation.  相似文献   

16.
We have characterized effects of phorbol, 12-myristate 13 acetate (PMA) on growth and differentiation in a nullipotent embryonal carcinoma (EC) cell line, F9, in a pluripotent EC line, P19, and in the differentiated derivatives of these cells, In P19EC and F9EC PMA addition resulted in inhibition of growth, while in the differentiated derivates PMA was mitogenic. PMA did not induce differentiation in EC cells but potentiated the retinoic acid (RA) induced differentiation in P19EC, although, not in F9EC. Rapid morphological changes by PMA were seen in P19EC and two differentiated derivatives which represent different stages of differentiation. In F9 no rapid morphological changes were induced by PMA. Using [3H]phorbol dibutyrate as a ligand we showed that during differentiation into endoderm-like cells the number of phorbol ester receptors increases, while in epithelial-like derivatives no increase is found. In differentiated cells with an increased number of phorbol ester receptors, the cytoplasmic Ca2+- and phospholipid-dependent protein kinase (the putative receptor for phorbol esters) activity was also increased. Only in those derivatives where the number of phorbol ester receptors is increased, is the binding of epidermal growth factor (EGF) inhibited by PMA. These results suggest a relationship between levels of expression of phorbol ester receptors, cytoplasmic protein kinase C and biological effects, namely rapid morphological changes, altered growth, potentiation of RA induced differentiation, and inhibition of EGF binding.  相似文献   

17.
18.
Transforming growth factor-alpha (TGF-alpha) is an autocrine growth factor for epidermal keratinocytes that can induce its own expression (autoinduction). Because the regulation of this process may be important for the control of epidermal growth, we examined the roles of EGF receptor tyrosine kinase and protein kinase C (PKC) in TGF-alpha autoinduction in cultured human keratinocytes. Antiphosphotyrosine immunoblot analysis demonstrated that EGF and TGF-alpha rapidly and markedly stimulated tyrosine phosphorylation of a 170 kDa protein in growth factor-deprived keratinocytes. This protein was identified as the EGF receptor by immuno-precipitation using anti-EGF receptor mAbs. Tyrosine phosphorylation and TGF-alpha mRNA accumulation in response to EGF and TGF-alpha were both inhibited by a monoclonal antibody against the EGF receptor and by the EGF receptor tyrosine kinase inhibitor RG50864, demonstrating the involvement of the tyrosine kinase activity of the receptor in TGF-alpha autoinduction. The monoclonal antibody inhibited keratinocyte growth and TGF-alpha autoinduction with similar potency (IC50 approximately 0.1 microgram/ml). TGF-alpha and the PKC activator tetradecanoyl phorbol 12-myristyl, 13-acetate (TPA) had similar effects on TGF-alpha steady-state mRNA levels, suggesting that PKC activation might be a downstream mediator of TGF-alpha autoinduction. However, down-regulation of more than 90% of keratinocyte PKC activity by bryostatin pretreatment abrogated the induction of TGF-alpha mRNA in response to TPA without affecting the autoinductive response or EGF-stimulated tyrosine phosphorylation. These results indicate that EGF receptor and PKC stimulate TGF-alpha gene expression by different pathways, and suggest that PKC is not required for TGF-alpha autoinduction in this system. Moreover, the fact that EGF-stimulated tyrosine phosphorylation and TGF-alpha autoinduction were not potentiated after PKC down-regulation suggests that PKC does not exert a tonic inhibitory influence on EGF receptor tyrosine kinase activity in normal human keratinocytes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号