首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Variation of wing and thorax length under thermoperiodic growth conditions was analysed in four strains of two sibling species, Drosophila melanogaster and D. simulans , from two European localities. Results were compared to those obtained with constant temperatures ranging from 12 to 31 °C.
Under constant temperatures the data basically confirmed previous results: concave reaction norms for wing and thorax length; a monotonically decreasing norm for wing : thorax ratio; and an increasing norm for sex dimorphism (female : male ratio). Phenotypic variability was maximum at extreme temperatures and minimum at middle ones. Slight differences were observed according to the geographical origin: the difference between strains from Bordeaux (France) and Cordoba (Spain) was maximum at low temperatures but disappeared at about 28 °C.
According to the temperatures chosen, alternating thermal regimens had either no effect or produced a significant size reduction, probably reflecting a periodic stress. The magnitude of this effect was proportional to the amplitude of the thermoperiod but not to the quality (cold or heat) of the stress. In a similar way, the wing : thorax ratio was either not modified or reduced significantly, indicating that wing length was relatively more affected than thorax length by alternating thermal regimens. Sex dimorphism also showed either no change or a significant increase, indicating that males were relatively more reactive than females to alternating conditions. Finally, regimens of broad amplitudes increased the phenotypic variability, again an indication of stressful effects. All these observations should be taken into account when analysing phenotypic variability in nature and trying to understand natural selection in wild-living populations.  相似文献   

2.
Phenotypic plasticity of abdomen pigmentation was investigated in populations of the sibling species Drosophila melanogaster and D. simulans, living in sympatry in two French localities. Ten isofemale lines of each population and species were grown at different constant temperatures spanning their complete thermal range from 12 to 31°C. Genetic variability between isofemale lines was not affected by growth temperature, but was consistently less in D. simulans. For all traits, the dark pigmentation of the abdominal segments decreased according to growth temperature, in agreement with the thermal budget adaptive hypothesis. The shapes of the response curves were different between the abdominal segments, but for a given segment, quite similar in the two species. On average D. simulans was lighter than D. melanogaster, but the difference was mainly expressed at higher temperatures. An interesting result was the difference observed between the two localities: flies from the colder locality (Villeurbanne) were found to be darker than flies from the warmer locality (Bordeaux). Interestingly, this difference was expressed only at low temperatures, 21°C and below, that is, at temperatures encountered in natural conditions. This suggests an adaptive response resulting in a change of the shape of reaction norm and involving genotype-environment interactions. When comparing the genetic structure of geographic populations for quantitative traits, several laboratory environments should be preferred to a single one.  相似文献   

3.
SUMMARY Variation of dark pigmentation according to developmental temperature was investigated in two geographic populations (France and India) with the isofemale line technique (20 lines for each population). The response curves called the reaction norms, were established in females for seven different segments: the mesothorax and abdomen segments 2–7 (Abd 2–7). In all cases the response curves were non-linear and had to be described either by a quadratic convex polynomial for thorax and Abd 2–5, or by a cubic polynomial for Abd 6 and 7. Among abdomen segments, increasing antero-posterior gradients were observed for several traits, including average pigmentation, overall phenotypic plasticity, the temperature of minimum pigmentation, and the curvature parameter of quadratic norms. Genetic correlations between abdomen segments were high when adjacent segments were considered, but became nil when more distant segments were correlated, suggesting that different pigmentation genes are expressed in the anterior and the posterior part of the abdomen. Characteristic values of reaction norms provided information either on trait value (i.e., the extension of pigmentation) or on plasticity. Correlations between plasticity and pigmentation were generally low and non-significant, suggesting their genetic independence. The overall darker pigmentation which is observed at low temperatures is assumed to be an adaptive plasticity. However, the differences which are evidenced among segments reveal strong interactions with developmental genes. These interactions are less likely to be a consequence of natural selection and are better interpreted as developmental constraints. The reaction norms analysis reveals the complexity of these interactions and should help, in the future, in the identification of the responsible thermosensitive genes.  相似文献   

4.
Gibert P  Moreteau B  Munjal A  David JR 《Genetica》1999,105(2):165-176
Drosophila kikkawai is known to be polymorphic for a single autosomal locus controlling abdomen pigmentation in females. Two strains homozygous at this locus (Abdomen pigmentation, Abp) were established from a polymorphic Indian population: one was homozygous (DD) for the dark allele, the other (LL) for the light allele. A Mendelian analysis of crosses at 25°C confirmed the occurrence of a major locus, with dominance of the D allele. Phenotypic variation of pigmentation according to growth temperature was then analyzed in DD and LL male and female flies, and in reciprocal F1. A slight difference was found between reciprocal F1 females from a dark mother were darker but not at all temperatures. In females, the D allele exhibited an antero‐posterior gradient of increasing expression from segment 27, with dominance over L and an increased expression at low temperatures. In males, abdomen pigmentation was uniformly light in segments 25, the D allele being repressed by the sex genotype. In segment 6, the D allele was expressed but only at low temperatures, and was either recessive to L or codominant. Phenotypic plasticity that is, amount of change induced by different growth temperatures, was variable according to genotype and segment. It always corresponded to a darkening of the fly at lower temperatures, but was generally much less than in D. melanogaster. In D. kikkawai, climatic adaptation might occur more by changing the frequency of the D allele than by phenotypic plasticity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Robertson  Alan  Briscoe  D. A.  Louw  J. H. 《Genetica》1977,47(1):73-76
Summary A locus affecting abdomen pigmentation of Drosophila melanogaster females is shown to have a large number of alleles in wild populations. Some of these also affect sternopleural bristle count.  相似文献   

6.
Jeong S  Rokas A  Carroll SB 《Cell》2006,125(7):1387-1399
Hox genes have been implicated in the evolution of many animal body patterns, but the molecular events underlying trait modification have not been elucidated. Pigmentation of the posterior male abdomen is a recently acquired trait in the Drosophila melanogaster lineage. Here, we show that the Abdominal-B (ABD-B) Hox protein directly activates expression of the yellow pigmentation gene in posterior segments. ABD-B regulation of pigmentation evolved through the gain of ABD-B binding sites in a specific cis-regulatory element of the yellow gene of a common ancestor of sexually dimorphic species. Within the melanogaster species group, male-specific pigmentation has subsequently been lost by at least three different mechanisms, including the mutational inactivation of a key ABD-B binding site in one lineage. These results demonstrate how Hox regulation of traits and target genes is gained and lost at the species level and have general implications for the evolution of body form at higher taxonomic levels.  相似文献   

7.
Gibert P  Moreteau B  David JR 《Heredity》2004,92(6):499-507
In Drosophila melanogaster, body pigmentation is a quantitative trait that depends on developmental temperature. When investigated over the whole thermal range of the species, pigmentation exhibits nonlinear reaction norms that differ among segments. The isofemale line method was used to analyse the genetic variability in two natural populations that affected the shape of reaction norms. Each line was considered as an experimental repeat, and polynomial reaction norms fitted to calculate the characteristic values (eg the coordinates of a maximum). In total, 20 lines from two geographically distant populations (France and India) were investigated at seven developmental temperatures (12-31 degrees C) in two successive generations (G2 and G3). We analysed the genetic repeatability (ie the correlation between generations) of three kinds of parameters: intraclass correlation coefficients (isofemale heritability), family means at different temperatures and the characteristic values of the reaction norms. For intraclass correlation, a low genetic repeatability was found. For family mean values grown at various temperatures, an overall positive and highly significant repeatability was found (r=0.55+/-0.024). Finally, a positive significant G2-G3 correlation was also the rule for the characteristic values of the reaction norms. Significant differences could be found between values describing either the trait or its plasticity, but with no general trend. A slightly higher repeatability was observed in the Indian population. These results show that, with a family selection design, the shape of the reaction norms might be modified in various ways.  相似文献   

8.
Abstract.— We examined the genetic architecture of plasticity of thorax and wing length in response to temperature in Drosophila melanogaster . Reaction norms as a function of growth temperature were analyzed in 20 isofemale lines in a natural population collected from Grande Ferrade near Bordeaux (southern France) in two different years. We found evidence for a complex genetic architecture underlying the reaction norms and differences between males and females. Reaction norms were negative quadratics. Genetic correlations were moderately high between traits within environments. Among characteristic values, the magnitudes of genetic correlations varied among traits and sexes. We hypothesized that genetic correlations among environments would decrease as temperatures became more different. This expectation was upheld for only one trait, female thorax length. For males for both traits, the correlations were large for both very similar and very different temperatures. These correlations may constrain the evolution of the shape of the reaction norms. Whether the extent of independence implies specific regulatory genes or only a specific allelic regulation of trait genes can not be decided from our results.  相似文献   

9.
Using quantitative trait locus (QTL) mapping, we studied the genetic basis of the difference in pigmentation between two sister species of Drosophila: Drosophila yakuba, which, like other members of the D. melanogaster subgroup, shows heavy black pigmentation on the abdomen of males and females, and D. santomea, an endemic to the African island of S?o Tomé, which has virtually no pigmentation. Here we mapped four QTL with large effects on this interspecific difference in pigmentation: two on the X chromosome and one each on the second and third chromosomes. The same four QTL were detected in male hybrids in the backcrosses to both D. santomea and D. yakuba and in the female D. yakuba backcross hybrids. All four QTL exhibited strong epistatic interactions in male backcross hybrids, but only one pair of QTL interacted in females from the backcross to D. yabuka. All QTL from each species affected pigmentation in the same direction, consistent with adaptive evolution driven by directional natural selection. The regions delimited by the QTL included many positional candidate loci in the pigmentation pathway, including genes affecting catecholamine biosynthesis, melanization of the cuticle, and many additional pleiotropic effects.  相似文献   

10.
The number of neurosensory bristles on abdominal sternites of Drosophila is a most investigated trait for quantitative genetic studies. However, the developmental pattern expressed on successive segments in both sexes has remained so far a neglected field. We explored three aspects of this general problem with an isofemale line design: comparing two distantly related species, Drosophila melanogaster and Zaprionus indianus, investigating bristle number variation along the antero-posterior axis, and analysing the sexual dimorphism. Antero-posterior variations could be analysed from segment A2 to A7 in females, and A2-A5 in males. In D. melanogaster, males and females showed parallel changes with a consistently lower number in males. In Z. indianus females the number was quite stable along the abdomen, while in males an important antero-posterior increase was found. The sexual dimorphism was further analysed by considering the female-male correlation and the female/male ratio. The results suggest that sternite bristle number is determined by several developmental genetic systems. One is acting along the antero-posterior axis and may be associated to a gradient, since the genetic correlation decreases when more distant segments are compared. Another is acting in the same way on most segments of both sexes, since the female-male genetic correlation is similar between homologous and non-homologous segments. Finally, genes with specific sex effects are acting on A7 in females of both species, and on A5 in Z. indianus males. The overall architecture of female and male abdomen seems to be constrained by the development of reproductive organs. A large difference between species suggests, however, that the sexual dimorphism of abdominal bristle number is not evolutionarily constrained.  相似文献   

11.
The phenotypic plasticity of abdominal bristle number (segments 3 and 4 in females) was investigated in 10 isofemale lines from a French population, grown at 7 constant temperatures, ranging from 12‡ to 31‡C. Overall concave reaction norms were obtained with a maximum around 20‡-21‡C. Intraclass correlation (isofemale line heritability) was not affected by temperature. Correlations between segments 3 and 4 strongly contrasted a low within-line phenotypic correlation (r = 0.39 ± 0.04) and a high, between-line genetic correlation (r = 0.89 ± 0.03). A significant decrease of the genetic correlation was observed when comparing more different temperatures. Finally, among 7 other morphometrical traits which were measured on the same set of lines, 3 provided a significant positive genetic correlation with abdominal bristles: thoracic bristles, abdomen pigmentation and thoracic pigmentation.  相似文献   

12.
Laboratory studies were conducted to assess the effect of temperature on the survival, development, fecundity, and longevity of Helicoverpa armigera (Hübner) at 11 constant temperatures ranging from 12.5 to 40 degrees C, as well as at five alternating temperature regimes (25-10, 30-15, 32.5-17.5, 35-20, and 35-27.5 degrees C) and under a photoperiod of 16:8 (L:D) h. H. armigera reared at constant temperatures did not develop from egg to adult (emergence) outside the temperature range of 17.5-32.5 degrees C. The alternating conditions expanded this range from 10 to 35 degrees C. The lowest developmental thresholds of the immature stages were estimated by a linear model and ranged from 10.17 (pupal stage) to 11.95 degrees C (egg stage) at constant temperature regimes and from 1.1 to 5.5 degrees C, respectively at alternating temperatures. The values of developmental thresholds estimated using the nonlinear (Lactin-2) model were lower than those estimated by the linear model for constant and alternating temperature regimes except for larval and pupal stages at constant temperatures. Mean adult longevity fluctuated from 34.4 d at 15 degrees C to 7.6 d at 35 degrees C. Females reared under all alternating temperature regimes laid more eggs than females reared at any, except the 25 degrees C, constant temperature treatment. The intrinsic rate of increase was highest at 27.5 degrees C, at both the constant and the corresponding alternating temperature regimes (0.147 and 0.139, respectively). Extreme temperatures had a negative effect on life table parameters.  相似文献   

13.
We have investigated the role of the Antennapedia and Bithorax complexes (ANT-C and BX-C) on the production of cuticular hydrocarbons in Drosophila melanogaster. In males, there is little, if any, influence of these complexes on the hydrocarbon pattern. In females, there are large and opposite effects of these complexes on diene production: two ANT-C mutations cause an increase in diene production and a reduction of monoenes, whereas most BX-C mutations result in a decrease in dienes and an increase in monoenes, although their sum remains constant. The effect is the highest in Mcp and iab6 females. It is suggested that a factor originating from the prothorax might activate the conversion of monoenes to dienes in females. The abdomen seems to have a crucial role in the production or control of pheromones: abdominal segments four to seven have the main effects, with a most dramatic effect for segments four and five.  相似文献   

14.
Populations belonging to the sibling species Drosophila melanogaster and D. simulans were collected in Southwestern France and Southern Spain, and investigated under constant (CT) and alternating (AT) temperature regimes. Development under CT was possible between 11 and 32 degrees C and egg-to-adult viability curves were almost 'rectangular', with a sharp decrease below 14 and above 29 degrees C. Rate of development followed a complex non-linear curve. A model described the curve as an exponential below a critical temperature (T(C)), and above T(C) as the difference between this function and another exponential which is assumed to show deleterious effects of heat. Developmental rates under two daily 12-h phases with various mid-temperatures and thermal amplitudes were compared to expected rates calculated from the above model. Acceleration effects were observed at four AT (in increasing order: 12-30, 9-21, 11-21, 16-26 degrees C); retardation occurred at three other ones (in increasing order, 7-21, 5-15, 7-29 degrees C). When expressed by the ratio observed/expected, the effects could be predicted using a multiple regression, as a positive function of the thermal amplitude and a negative one of the mid-temperature. Viability under AT was analysed considering an equivalent developmental temperature (EDT), that is the CT which would produce the same rate or development. Very low viabilities occurred under broad amplitude regimes, but the deleterious effects of some extreme temperatures, that would be lethal under CT, could be recovered by daily return to a moderate temperature. The two species exhibited slight but significant differences in their characteristic temperatures: developmental zero, critical temperature, temperature of maximum rate, upper developmental limit. All data may be interpreted by considering that D. simulans compared to D. melanogaster is more tolerant to cold but less tolerant to heat.  相似文献   

15.
Phenotypic variability for abdominal pigmentation in females of an Indian natural population ofDrosophila melanogaster was studied using isofemale lines and by rearing the larvae and pupae at 4 different temperatures ranging from 20–30°C. The dark pigmented area was found to increase in all the three segments when the growth temperature decreases. A significant positive correlation was detected for the occurrence of dark pigmentation in the 5th and 6th segments in each growth temperature but for other comparisons the correlation was not regular. Analysis of variance (ANOVA) was carried out both for individual segments over different growth temperatures and also for each temperature over the three abdominal segments and in all cases found to be statistically significant. The results are quite different from the earlier observation in FrenchDrosophila melanogaster and suggest that genes controlling pigmentation are temperature dependent; temperature could affect post-transitional events involved in pigmentation. The present findings also clearly indicate that significant genotype-environment interaction exists, responsible for the production of desired phenotype at the opportune moment during the life span of a species.  相似文献   

16.
The effects of different light regimes on the fitness of organisms have typically been studied using mean or median adult life span as the sole index of physiological well-being. It is, however, known that life span is inversely related to reproductive output in many species. Moreover, the effects of a given environmental treatment on life span can be due to effects on either age-independent mortality or the "rate of aging," or a combination of both. Drawing evolutionary inferences from the effects of light regime on mean or median adult life span alone is difficult and, at best, speculative. We examined the effects of constant light (LL), alternating light-dark cycles (LD 12:12 h), and constant darkness (DD) on the life span of reproducing and virgin flies in four populations of Drosophila melanogaster and also estimated lifetime fecundity in the three light regimes. The light regime effects on life span were further dissected by examining the age-independent mortality and the Gompertz rate of aging under the three light regimes. While mean adult life span of reproducing males and females and virgin females was significantly shorter in LL compared to LD 12:12 h and DD, life-time egg production was highest in LL. Life span of virgin males was not significantly affected by light regime. The rate of aging in reproducing females was higher in LL as compared to DD, whereas age-independent mortality was higher in DD. As reproductive output, especially early in life, is a far more significant contributor to fitness than is life span, our results suggest that the earlier reported deleterious effects of LL on fitness are partly an artifact of examining life span alone, without considering other components of adult fitness that trade off with life span. Our results suggest that detailed investigation of the effects of light regime on the physiological and behavioral processes that accompany reproduction is necessary to fully understand the effects of different light regimes on adult fitness in Drosophila.  相似文献   

17.
Ng CS  Hamilton AM  Frank A  Barmina O  Kopp A 《Genetics》2008,180(1):421-429
Pigmentation is a rapidly evolving trait that can play important roles in mimicry, sexual selection, thermoregulation, and other adaptive processes in many groups of animals. In Drosophila, pigmentation can differ dramatically among closely related taxa, presenting a good opportunity to dissect the genetic changes underlying species divergence. In this report, we investigate the genetic basis of color pattern variation between two allopatric subspecies of Drosophila malerkotliana, a widespread member of the ananassae species subgroup. In D. malerkotliana malerkotliana, the last three abdominal segments are darkly pigmented in males but not in females, while in D. malerkotliana pallens both sexes lack dark pigmentation. Composite interval mapping in F(2) hybrid progeny shows that this difference is largely controlled by three quantitative trait loci (QTL) located on the 2L chromosome arm, which is homologous to the 3R of D. melanogaster (Muller element E). Using highly recombinant introgression strains produced by repeated backcrossing and phenotypic selection, we show that these QTL do not correspond to any of the candidate genes known to be involved in pigment patterning and synthesis in Drosophila. These results, in combination with similar analyses in other Drosophila species, indicate that different genetic and molecular changes are responsible for the evolution of similar phenotypic traits in different lineages. This feature makes Drosophila color patterns a powerful model for investigating how the genetic basis of trait evolution is influenced by the intrinsic organization of regulatory pathways controlling the development of these traits.  相似文献   

18.
The two sibling cosmopolitan species, Drosophila melanogaster and D. simulans, are able to proliferate under very different climatic conditions. This has resulted in local adaptations, which are often arranged in latitudinal clines. Such clines are documented for body weight, wing and thorax length, sternopleural and abdominal bristle number, ovariole number and thoracic pigmentation. The overall magnitude of geographical differentiation is, however, much less in D. simulans than in D. melanogaster, and latitudinal clines are less pronounced. The fact that natural populations live under different climates raises the problem of interaction between temperature and phenotype. The reaction norms of morphometrical traits have been investigated as a function of growth temperature. The shapes of the response curves vary according to the investigated trait. They are generally curvilinear and can be described by calculating characteristic values after polynomial adjustments. For a given trait, the reaction norms of the two species are similar in their shape, although some significant differences may be observed. Within each species, significant differences are also observed between geographic populations: reaction norms are not parallel and the divergence is better marked when more distant populations (e.g., temperate and tropical) are compared. It thus appears that besides mean trait value, phenotypic plasticity is also a target of natural selection. A specific analysis of wing shape variation according to growth temperature was also undertaken. Reaction norms with different shapes may be observed in various parts of the wing: the major effect is found between the basis and the tip of the wing, but in a similar way in the two species. By contrast, some ratios, called wing indices by taxonomists, may exhibit completely different reaction norms in the two species. For a single developmental temperature (25 degrees C) the phenotypic variability of morphometrical traits is generally similar in the two species, and also the genetic variability, estimated by the intraclass correlation. A difference exists, however, for the ovariole number which is less variable in D. simulans. Variance parameters may vary according to growth temperature, and a detailed analysis was made on wing dimensions. An increase of environmental variability at extreme, heat or cold temperatures, has been found in both species. Opposite trends were, however, observed for the genetic variability: a maximum heritability in D. simulans at middle temperatures, corresponding to a minimum heritability in D. melanogaster. Whether such a difference exists for other traits and in other populations deserves further investigations. In conclusion, morphometrical analyses reveal a large amount of significant differences which may be related to speciation and to the divergence of ecological niches. Within each species, numerous geographic variations are also observed which, in most cases, reflect some kinds of climatic adaptation.  相似文献   

19.
Abstract.— Drosophila yakuba is a species widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by its common ancestor with D. yakuba. The two species differ strikingly in pigmentation: D. santomea, unlike the other eight species in the D. melanogaster subgroup, almost completely lacks dark abdominal pigmentation. D. yakuba shows the sexually dimorphic pigmentation typical of the group: both sexes have melanic patterns on the abdomen, but males are much darker than females. A genetic analysis of this species difference using morphological markers shows that the X chromosome accounts for nearly 90% of the species difference in the area of abdomen that is pigmented and that at least three genes (one on each major chromosome) are involved in each sex. The order of chromosome effects on pigmentation area are the same in males and females, suggesting that loss of pigmentation in D. santomea may have involved the same genes in both sexes. Further genetic analysis of the interspecific difference between males in pigmentation area and intensity using molecular markers shows that at least five genes are responsible, with no single locus having an overwhelming effect on the trait. The species difference is thus oligogenic or polygenic. Different chromosomal regions from each of the two species influenced pigmentation in the same direction, suggesting that the species difference (at least in males) is due to natural or sexual selection and not genetic drift. Measurements of sexual isolation between the species in both light and dark conditions show no difference, suggesting that the pigmentation difference is not an important cue for interspecific mate discrimination. Using DNA sequence differences in nine noncoding regions, we estimate that D. santomea and D. yakuba diverged about 400,000 years ago, a time similar to the divergences between two other well‐studied pair of species in the subgroup, both of which also involved island colonization.  相似文献   

20.
Traits with a common genetic basis frequently display correlated phenotypic responses to selection or environmental conditions. In Drosophila melanogaster, pigmentation of the abdomen and a trident‐shaped region on the thorax are genetically correlated. Here, we used a pooled replicated genomewide association approach (Pool‐GWAS) to identify the genetic basis of variation in thoracic trident pigmentation in two Drosophila melanogaster populations. We confirmed the previously reported large effect of ebony and the association of the cosmopolitan inversion In(3R)Payne. For the first time, we identified tan as another major locus contributing to variation in trident pigmentation. Intriguingly, the regulatory variants of tan that were most strongly associated with female abdominal pigmentation also showed a strong association with trident pigmentation. We validated this common genetic basis in transgenic assays and found qualitatively similar effects on trident and abdominal pigmentation. Further work is required to determine whether this genetic correlation is favoured by natural selection or reflects a neutral by‐product of a shared regulatory architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号