首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mesenchymal stem cell preparations have been proposed for muscle regeneration in musculoskeletal disorders. Although MSCs have great in vitro expansion potential and possess the ability to differentiate into several mesenchymal lineages, myogenesis has proven to be much more difficult to induce. We have recently demonstrated that Pax3, the master regulator of the embryonic myogenic program, enables the in vitro differentiation of a murine mesenchymal stem cell line (MSCB9-Pax3) into myogenic progenitors. Here we show that injection of these cells into cardiotoxin-injured muscles of immunodeficient mice leads to the development of muscle tumors, resembling rhabdomyosarcomas. We then extended these studies to primary human mesenchymal stem cells (hMSCs) isolated from bone marrow. Upon genetic modification with a lentiviral vector encoding PAX3, hMSCs activated the myogenic program as demonstrated by expression of myogenic regulatory factors. Upon transplantation, the PAX3-modified MSCs did not generate rhabdomyosarcomas but rather, resulted in donor-derived myofibers. These were found at higher frequency in PAX3-transduced hMSCs than in mock-transduced MSCs. Nonetheless, neither engraftment of PAX3-modified or unmodified MSCs resulted in improved contractility. Thus these findings suggest that limitations remain to be overcome before MSC preparations result in effective treatment for muscular dystrophies.  相似文献   

3.
Objectives:To investigate the effect of neurotrophin-3 (NT-3) on osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).Methods:Osteogenic differentiation was detected by alkaline phosphatase (ALP) staining and alizarin red staining (ARS). Adipogenic differentiation was detected by oil red O (ORO) staining. The expression of bone-related genes (Runx2, Osterix, OCN, ALP) and lipogenic genes (FABP4, PPAR, CEBP, LPL) was detected by real-time quantitative polymerase chain reaction (real-time qPCR). The expression of p-Akt and Akt protein was detected by Western blot assay.Results:ALP staining and ARS staining showed that the overexpression of NT-3 could promote the differentiation into osteoblasts, while knockdown of NT-3 could inhibit that. Real-time qPCR showed that the overexpression of NT-3 could increase the expression of osteoblast genes, while knockdown of NT-3 could inhibit that. ORO staining showed that the overexpression of NT-3 could inhibit the differentiation into adipogenesis, while knockdown of NT-3 can promote that. Real-time qPCR showed that the overexpression of NT-3 could reduce the expression of lipogenic genes. while knockdown NT-3 could increase that. In addition, the overexpression of NT-3 increased p-Akt/Akt levels significantly, while knockdown NT-3 reduced that significantly.Conclusion:NT-3 could promote the differentiation of mouse BMSCs into osteoblasts and inhibit their differentiation into adipogenesis.  相似文献   

4.
The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate in regenerative myogenesis, the signals and mechanisms involved in this process have not been elucidated. This study was designed to investigate whether signals from injured rat skeletal muscle were competent to induce a program of myogenic differentiation in expanded cultures of rat bone-marrow-derived mesenchymal stem cells (MSC). We observed that the incubation of MSC with a conditioned medium prepared from chemically damaged but not undamaged muscle resulted in a time-dependent change from fibroblast-like into elongated multinucleated cells, a transient increase in the number of MyoD positive cells, and the subsequent onset of myogenin, alpha-actinin, and myosin heavy chain expression. These results show that damaged rat skeletal muscle is endowed with the capacity to induce myogenic differentiation of bone-marrow-derived mesenchymal progenitors.  相似文献   

5.
6.
Adult bone marrow mesenchymal stem cells (MSCs) can differentiate into several types of mesenchymal cells, including osteocytes, chondrocytes, and adipocytes, but can also differentiate into non-mesenchymal cells, such as neural cells, under appropriate experimental conditions. Until now, many protocols for inducing neuro-differentiation in MSCs in vitro have been reported. But due to the differences in MSCs' isolation and culture conditions, the results of previous studies lacked consistency and comparability. In this study, we induced differentiation into neural phenotype in the same MSCs population by three different treatments: beta-mercaptoethanol, serum-free medium and co-cultivation with fetal mouse brain astrocytes. In all of the three treatments, MSCs could express neural markers such as NeuN or GFAP, associating with remarkable morphological modifications. But these treatments led to neural phenotype in a non-identical manner. In serum-free medium, MSCs mainly differentiated into neuron-like cells, expressing neuronal marker NeuN, and BME can promote this process. Differently, after co-culturing with astrocytes, MSCs leaned to differentiate into GFAP(+) cells. These data confirmed that MSCs can exhibit plastic neuro-differentiational potential in vitro, depending on the protocols of inducement.  相似文献   

7.
The main purpose of the article is to review recent knowledge about growth factors and their effect on the chondrogenic differentiation of mesenchymal stem cells under in vitro conditions. Damaged or lost articular cartilage leads to progressive debilitation, which have major impact on the life quality of the affected individuals of both sexes in all age groups. Mature hyaline cartilage has a very low self-repair potential due to intrinsic properties - lack of innervation and vascular supply. Another limiting factor is low mitotic potential of chondrocytes. Small defects are healed by migration of chondrocytes, while large ones are healed by formation of inferior fibrocartilage. However, in many cases osteoarthritis develops. Recently, cellular therapy combining mesenchymal stem cells and proper differentiation factors seems to be promising tool for hyaline cartilage defects healing.  相似文献   

8.
Mesenchymal stem cells (MSCs) have been widely exploited as promising candidates in clinical settings for bone repair and regeneration in view of their self-renewal capacity and multipotentiality. However, little is known about the mechanisms underlying their fate determination, which would illustrate their effectiveness in regenerative medicine. Recent evidence has shed light on a fundamental biological role of autophagy in the maintenance of the regenerative capability of MSCs and bone homeostasis. Autophagy has been implicated in provoking an immediately available cytoprotective mechanism in MSCs against stress, while dysfunction of autophagy impairs the function of MSCs, leading to imbalances of bone remodeling and a wide range of aging and degenerative bone diseases. This review aims to summarize the up-to-date knowledge about the effects of autophagy on MSC fate determination and its role as a stress adaptation response. Meanwhile, we highlight autophagy as a dynamic process and a double-edged sword to account for some discrepancies in the current research. We also discuss the contribution of autophagy to the regulation of bone cells and bone remodeling and emphasize its potential involvement in bone disease.  相似文献   

9.
The capacity of stem cells to differentiate into specific cell types makes them very promising in tissue regeneration and repair. However, realizing this promise requires novel methods for guiding lineage-specific differentiation of stem cells. In this study, hepatocyte growth factor (HGF), an important morphogen in liver development, was co-printed with collagen I (Col) to create arrays of protein spots on glass. Human adipose stem cells (ASCs) were cultured on top of the HGF/Col spots for 2 weeks. The effects of surface-immobilized HGF on hepatic differentiation of ASCs were analyzed using RT-PCR, ELISA and immunocytochemistry. Stimulation of stem cells with HGF from the bottom-up caused an upregulation in synthesis of α-fetoprotein and albumin, as determined by immunocytochemistry and ELISA. RT-PCR results showed that the mRNA levels for albumin, α-fetoprotein and α1-antitrypsin were 10- to 20-fold higher in stem cells cultured on the HGF/Col arrays compared to stem cells on Col only spots. Our results show that surfaces containing HGF co-printed with ECM proteins may be used to differentiate mesenchymal stem cells such as ASCs into hepatocyte-like cells. These results underscore the utility of growth factor-containing culture surfaces for stem cell differentiation.  相似文献   

10.
骨骼肌良好的再生能力是由于肌卫星细胞的存在,然而肌卫星细胞的数量仅占骨骼肌细胞数量的1%~ 5%,当肌肉损伤时,仅依靠这些卫星细胞还不足以促进骨骼肌修复与再生,并且这种再生能力会随着年龄的增大而衰减,并不能修复损伤严重的骨骼肌。骨髓间充质干细胞(BMSC)因其多向分化潜能,旁分泌潜能,免疫调节能力及容易获取等特点广泛用于损伤骨骼肌的修复与再生。但在某种程度上,仅仅采用BMSC治疗损伤的骨骼肌仍不能达到满意的效果。因此,大量研究采用药物、生物材料、细胞及细胞因子对BMSC进行预处理不仅可改善它的移植率,还可显著促进其向骨骼肌分化,从而最大限度的发掘骨骼肌间充质干细胞的成肌分化潜能以促进骨骼肌的修复。因此,本篇综述旨在概括BMSC成肌分化在骨骼肌再生中的应用。  相似文献   

11.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

12.
Ju X  Li D  Gao N  Shi Q  Hou H 《Biotechnology journal》2008,3(3):383-391
Directional induction and differentiation of mesenchymal stem cells (MSCs) is very important to clinical therapy, but the mechanisms that govern differentiation are not well understood. However, traditional plate culture cannot precisely control cellular behavior because cells take up substances while secreting cytokines and wastes. Here, we used a microfluidic device to culture MSCs inside a microchamber. Hepatic differentiation medium was perfused to evaluate the ability of MSCs to differentiate toward hepatic cells on the chip. Parallel differentiation on 96-well plates was used to provide a detailed comparison of the differences between the two culturing methods. After treatment for 4 weeks, differentiated cells from both groups could express hepatocyte-specific markers, including alpha-fetoprotein, tyrosine aminotransferase, and albumin. The bioactivity assays revealed that these hepatocyte-like cells could uptake lipoprotein, but cells that differentiated on the chip showed more positive signals than the cells cultured on plates. Our results indicated that a microfluidic platform might be a potential tool for cost-effective and automated cell culture, and have potential applications in reliable cell-based screens and assays.  相似文献   

13.
14.
The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active β-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.  相似文献   

15.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

16.
Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.  相似文献   

17.
18.
In vitro differentiation of human mesenchymal stem cells to epithelial lineage   总被引:12,自引:0,他引:12  
Our study examined whether human bone marrow-derived MSCs are able to differentiate, in vitro, into functional epithelial-like cells. MSCs were isolated from the sternum of 8 patients with different hematological disorders. The surface phenotype of these cells was characterized.To induce epithelial differentiation, MSCs were cultured using Epidermal Growth Factor, Keratinocyte Growth Factor, Hepatocyte Growth Factor and Insulin-like growth Factor-II. Differentiated cells were further characterized both morphologically and functionally by their capacity to express markers with specificity for epithelial lineage. The expression of cytokeratin 19 was assessed by immunocytochemistry, and cytokeratin 18 was evaluated by quantitative RT-PCR (Taq-man). The data demonstrate that human MSCs isolated from human bone marrow can differentiate into epithelial-like cells and may thus serve as a cell source for tissue engineering and cell therapy of epithelial tissue.  相似文献   

19.
Chondrogenic differentiation of amniotic fluid-derived stem cells   总被引:3,自引:0,他引:3  
For regenerating damaged articular cartilage, it is necessary to identify an appropriate cell source that is easily accessible, can be expanded to large numbers, and has chondrogenic potential. Amniotic fluid-derived stem (AFS) cells have recently been isolated from human and rodent amniotic fluid and shown to be highly proliferative and broadly pluripotent. The purpose of this study was to investigate the chondrogenic potential of human AFS cells in pellet and alginate hydrogel cultures. Human AFS cells were expanded in various media conditions, and cultured for three weeks with growth factor supplementation. There was increased production of sulfated glycosaminoglycan (sGAG) and type II collagen in response to transforming growth factor-β (TGF-β) supplementation, with TGF-β1 producing greater increases than TGF-β3. Modification of expansion media supplements and addition of insulin-like growth factor-1 during pellet culture further increased sGAG/DNA over TGF-β1 supplementation alone. Compared to bone marrow-derived mesenchymal stem cells, the AFS cells produced less cartilaginous matrix after three weeks of TGF-β1 supplementation in pellet culture. Even so, this study demonstrates that AFS cells have the potential to differentiate along the chondrogenic lineage, thus establishing the feasibility of using these cells for cartilage repair applications.  相似文献   

20.
Mesenchymal stem cells (MSCs) are mesoderm-derived cells that are considered a good source of somatic cells for treatment of many degenerative diseases. Previous studies have reported the differentiation of mesodermal MSCs into endodermal and ectodermal cell types beyond their embryonic lineages, including hepatocytes and neurons. However, the molecular pathways responsible for the direct or indirect cell type conversion and the functional ability of the differentiated cells remain unclear and need further research. In the present study, we demonstrated that valproic acid (VPA), which is a histone deacetylase inhibitor, induced an increase in the expression of endodermal genes including CXCR4, SOX17, FOXA1, FOXA2, GSC, c-MET, EOMES, and HNF-1β in human umbilical cord derived MSCs (hUCMSCs). In addition, we found that VPA is able to increase these endodermal genes in hUCMSCs by activating signal transduction of AKT and ERK. VPA pretreatment increased hepatic differentiation at the expense of adipogenic differentiation. The effects of VPA on modulating hUCMSCs fate were diminished by blocking AKT and ERK activation using specific signaling inhibitors. Together, our results suggest that VPA contributes to the lineage conversion of hUCMSCs to hepatic cell fate by upregulating the expression of endodermal genes through AKT and ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号