首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The serpin plasminogen activator inhibitor type 1 (PAI-1) plays an important role in physiological processes such as thrombolysis and fibrinolysis, as well as pathophysiological processes such as thrombosis, tumor invasion and metastasis. In addition to inhibiting serine proteases, mainly tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, PAI-1 interacts with different components of the extracellular matrix, i.e. fibrin, heparin (Hep) and vitronectin (Vn). PAI-1 binding to Vn facilitates migration and invasion of tumor cells. The most important determinants of the Vn-binding site of PAI-1 appear to reside between amino acids 110-147, which includes alpha helix E (hE, amino acids 109-118). Ten different PAI-1 variants (mostly harboring modifications in hE) as well as wild-type PAI-1, the previously described PAI-1 mutant Q123K, and another serpin, PAI-2, were recombinantly produced in Escherichia coli containing a His(6) tag and purified by affinity chromatography. As shown in microtiter plate-based binding assays, surface plasmon resonance and thrombin inhibition experiments, all of the newly generated mutants which retained inhibitory activity against uPA still bound to Vn. Mutant A114-118, in which all amino-acids at positions 114-118 of PAI-1 were exchanged for alanine, displayed a reduced affinity to Vn as compared to wild-type PAI-1. Mutants lacking inhibitory activity towards uPA did not bind to Vn. Q123K, which inhibits uPA but does not bind to Vn, served as a control. In contrast to other active PAI-1 mutants, the inhibitory properties of A114-118 towards thrombin as well as uPA were significantly reduced in the presence of Hep. Our results demonstrate that the wild-type sequence of the region around hE in PAI-1 is not a prerequisite for binding to Vn.  相似文献   

2.
Functionally active PAI-1 is bound to a discrete binding or carrier protein in plasma, which was recently identified as vitronectin. In the present study, the interaction between PAI-1 and vitronectin has been studied in purified systems and in plasma by agarose gel electrophoresis using non-denaturing conditions and by crossed immunoelectrophoresis using an antiserum produced towards purified PAI-1/vitronectin complex. Both methods revealed a clearly distinguishable complex with electrophoretic mobility in between the parent molecules. Virtually all of the purified vitronectin, which did not contain any appreciable amounts of polymerized material, and almost all of the vitronectin in plasma, had the capacity to form a complex with PAI-1. The results suggested a stoichiometry of 1:1 as the most likely ratio between the two molecules in the complex. In contrast to functionally active PAI-1, latent or chloramine T-inactivated PAI-1 did not form such a complex with vitronectin.  相似文献   

3.
The site of the reaction between plasminogen activators and plasminogen activator inhibitor 1 (PAI-1) was investigated in cultures of human umbilical vein endothelial cells. In conditioned medium from endothelial cells, two forms of a plasminogen activator-specific inhibitor can be demonstrated: an active form that readily binds to and inhibits plasminogen activators and an immunologically related quiescent form which has no anti-activator activity but which can be activated by denaturation. In conditioned medium, only a few percent of PAI-1 is the active form. However, the addition of increasing concentrations of tissue-type plasminogen activator (t-PA) or urokinase to confluent endothelial cells produced a saturable (3.0 pmol/5 x 10(5) cells), dose-dependent increase of the activator-PAI-1 complex in the conditioned medium even in the presence of actinomycin D or cycloheximide. This resulted also in a dose-dependent decrease of the residual PAI activity measured by reverse fibrin autography both in the conditioned medium and cell extracts. Short-time exposure of endothelial cells to a large amount of t-PA caused almost complete depletion of all cell-associated PAI activity. Although there was no detectable PAI activity even after activation of PAI by denaturants or antigen in the culture medium at 4 degrees C without the addition of t-PA, the addition of t-PA at 4 degrees C not only resulted in the formation of 70% of the amount of the t-PA.PAI complex in conditioned medium at 37 degrees C, but also induced PAI-1 antigen in a time and dose-dependent manner in the conditioned medium. Moreover, 125I-labeled t-PA immobilized on Sepharose added directly to endothelial cells formed a complex with PAI-1 in a dose-dependent manner. On the other hand, no detectable complex was formed with PAI-1 when Sepharose-immobilized 125I-labeled t-PA was added to endothelial cells under conditions in which the added t-PA could not contact the cells directly but other proteins could pass freely by the use of a Transwell. All these results suggest that a "storage pool" on the surface of endothelial cells or the extracellular matrix produced by endothelial cells contains almost all the active PAI-1, and reaction between PA and PAI-1 mainly occurs on the endothelial cell membranes, resulting in a decrease of the conversion of active PAI-1 to the quiescent form.  相似文献   

4.
Immunogold EM was employed to compare the distribution of type 1 plasminogen activator inhibitor (PAI-1) on the surface of agonist-activated human umbilical vein endothelial cells (HUVECs) with that of control, unactivated cells. As previously observed, (Schleef, R.R., T.J. Podor, E. Dunne, J. Mimuro, and D.J. Loskutoff. J. Cell Biol. 110:155-163), analysis of cross-sections of nonpermeabilized control HUVEC monolayers stained first with affinity-purified rabbit antibodies to PAI-1 and then with gold-conjugated goat anti-rabbit IgG, revealed the presence of relatively few gold particles (less than 1-2% of the total) on the apical cell surface. The majority of gold particles were detected primarily in the extracellular matrix between the culture substratum and the cell membrane. In contrast, treatment of HUVECs with tumor necrosis factor alpha (TNF alpha; 200 U/ml, 24 h) or with lipopolysaccharide (LPS; 10 micrograms/ml, 24 h) resulted in an increased staining of PAI-1 not only in the extracellular matrix, but also on the apical cell surface (10-fold increase). Immunoabsorption of the rabbit anti-PAI-1 with purified PAI-1, or treatment of HUVECs with tissue-type plasminogen activator (2.5 micrograms/ml, 2 h, 4 degrees C) reduced the amount of staining both on the apical surface and in the extracellular matrix of agonist-activated HUVECs by 80-95%. The topographical location of PAI-1 on the cell surface was examined further by coupling immunogold staining with high resolution surface replication. Transmission EM of surface replicas from TNF alpha- or LPS-activated HUVECs revealed a general increase in PAI-1 staining both on planar regions and within indentations of the apical cell surface. Nonactivated HUVECs revealed PAI-1-specific immunogold particles only in areas of exposed extracellular matrix between the cells and occasionally at regions of cell-cell contacts. Analysis of activated bovine aortic endothelial cells by immuno-electron microscopy, immunologic assays, and flow cytometry revealed similar increases in surface PAI-1. These increases in surface PAI-1 could be detected by 3 h and continued over a 24-h period. The expression of PAI-1 on the luminal surface of endothelial cells during immune or inflammatory reactions could reduce endothelial fibrinolytic activity, thus, promoting the localized, pathologic formation of intravascular thrombi.  相似文献   

5.
Plasminogen activator inhibitor-type 1 (PAI-1) is the primary inhibitor of endogenous plasminogen activators that generate plasmin in the vicinity of a thrombus to initiate thrombolysis, or in the pericellular region of cells to facilitate migration and/or tissue remodeling. It has been shown that the physiologically relevant form of PAI-1 is in a complex with the abundant plasma glycoprotein, vitronectin. The interaction between vitronectin and PAI-1 is important for stabilizing the inhibitor in a reactive conformation. Although the complex is clearly significant, information is vague regarding the composition of the complex and consequences of its formation on the distribution and activity of vitronectin in vivo. Most studies have assumed a 1:1 interaction between the two proteins, but this has not been demonstrated experimentally and is a matter of some controversy since more than one PAI-1-binding site has been proposed within the sequence of vitronectin. To address this issue, competition studies using monoclonal antibodies specific for separate epitopes confirmed that the two distinct PAI-1-binding sites present on vitronectin can be occupied simultaneously. Analytical ultracentrifugation was used also for a rigorous analysis of the composition and sizes of complexes formed from purified vitronectin and PAI-1. The predominant associating species observed was high in molecular weight (M(r) approximately 320,000), demonstrating that self-association of vitronectin occurs upon interaction with PAI-1. Moreover, the size of this higher order complex indicates that two molecules of PAI-1 bind per vitronectin molecule. Binding of PAI-1 to vitronectin and association into higher order complexes is proposed to facilitate interaction with macromolecules on surfaces.  相似文献   

6.
The interaction between type 1 plasminogen activator inhibitor (PAI-1) and fragments of vitronectin (Vn) was investigated. The PAI-1-binding domain was not destroyed when Vn was cleaved by treatment with either acid or CNBr. Acid-cleaved Vn was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by PAI-1 ligand binding. The smallest fragment (Mr 40,000) that retained PAI-1 binding function was sequenced and shown to contain the NH2 terminus of the molecule. Further cleavage of this fragment by treatment with CNBr generated a Mr 35,000 fragment (Pro52-Asp239) that did not interact with PAI-1, and a Mr 6,000 NH2-terminal fragment (Asp1-Met51) that spanned the somatomedin B domain and contained the RGD (cell binding) sequence. The purified Mr 6,000 fragment competed with immobilized Vn for PAI-1 binding, and formed complexes with activated PAI-1. These complexes could be immunoprecipitated by antibodies to PAI-1. Synthetic peptides containing the RGD sequence had no effect on the binding of this fragment to PAI-1. These results suggest that the cell-binding and PAI-1 binding sequences of Vn occupy distinct regions in the NH2-terminal somatomedin B domain of the molecule.  相似文献   

7.
Functionally active PAI-1 is bound to a discrete binding or carrier protein in plasma, which was recently identified as vitronectin. In the present study, the interaction between PAI-1 and vitronectin has been studied in purified systems and in plasma by agarose gel electrophesis using non-denaturing conditions and by crossed immunoelectrophoresis using an antiserum produced towards purified PAI-1/vitronectin complex. Both methods revealed a clearly distinguishable complex with electrophoretic mobility in between the parent molecules. Virtually all of the purified vitronectin, which did not contain any appreciable amounts of polymerized material, and almost all of the vitronectin in plasma, had the capacity to form a complex with PAI-1. The results suggested a stoichiometry of 1:1 as the most likely ratio between the two molecules in the complex. In contrast to functionally active PAI-1, latent or chloramine T-inactivated PAI-1 did not form such a complex with vitronectin.  相似文献   

8.
The interaction of plasminogen activator inhibitor-1 (PAI-1) with its binding protein vitronectin (VN) (Declerck, P. J., De Mol, M., Alessi, M.-C., Baudner, S., Paques, E.-P., Preissner, K. T., Müller-Berghaus, G., and Collen, D. (1988) J. Biol. Chem. 263, 15454-15461) in the extracellular matrix (ECM) of cultured human endothelial cells (HUVEC) was studied. Like PAI-1, VN was found associated with the ECM as evidenced by direct antibody binding, by Western blot analysis as well as by diffuse immunofluorescence staining in permeabilized HUVEC. The specific interaction of VN with confluent monolayers of HUVEC was found to be saturable within 2-4 h at 37 degrees C only with respect to binding to the cells, while no saturable binding to the underlying ECM was observed, indicating that the majority if not all ECM-associated VN was derived from the culture medium. In contrast to PAI-1, ECM-associated VN was resistant toward glycine (pH 2.3), guanidine or urokinase treatment, suggesting that VN was tightly associated with the ECM network. Binding of recombinant PAI-1 (rPAI-1) was largely blocked by anti-VN IgG and only partly by anti-collagen IgG but not by antibodies against other ECM components, indicating that VN constitutes the primary binding protein for ECM-associated PAI-1. This contention was supported by ligand blotting experiments in which rPAI-1 was reacted with nitrocellulose replicas of electrophoretically separated ECM components. Protein band(s) (Mr = 63,000-67,000), comigrating with bovine VN (i.e. medium-derived VN) rather than with human VN were identified as major binding component(s). Moreover, binding studies with purified components revealed that PAI-1 did not show any affinity for collagen (type I/III) alone, whereas VN collagen coating was a much better template for PAI-1 binding than VN alone and that conformationally extended VN provides maximal PAI-1 binding capacity. Binding of rPAI-1 to surface-coated VN was saturable and revealed that (unlike urokinase) heparin or the synthetic peptide Gly-Arg-Gly-Asp-Ser did not inhibit PAI-1 binding. Ligand binding of rPAI-1 to nitrocellulose replicas from sodium dodecyl sulfate-polyacrylamide gels containing electrophoretically separated peptides from VN digests documented the association of PAI-1 with Mr = 10,000-20,000 fragments originating from the heparin-binding domain of VN. These results indicate that the exposure of the glycosaminoglycan-binding domain in VN may allow the concomitant binding of PAI-1 and heparin-like molecules to this region of the VN molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

10.
The interaction between guanidine-activated bovine type 1 plasminogen activator inhibitor (PAI-1) and bovine vitronectin was investigated. Activated PAI-1 bound to vitronectin in a dose- and time-dependent manner, and binding was saturable. The dissociation constant (Kd) for this interaction was estimated to be 3.10(-10) mol/l by Scatchard analysis. Complexes of activated PAI-1 and vitronectin were relatively stable at 4 degrees C (T1/2 greater than 24 h), but dissociated with a T1/2 of 4 h at 37 degrees C. The half-life of PAI-1 activity was increased from 2.5 to 4.5 h upon binding to immobilized vitronectin. In order to identify the binding domain(s) in vitronectin for activated PAI-1, the ability of PAI-1 to bind to vitronectin fragments was assessed. Vitronectin was cleaved by thrombin in a dose- and time-dependent manner, generating fragments of Mr 60,000, 54,000 and 38,000. The PAI-1 binding domain(s) were not destroyed by this treatment, since the digested vitronectin competed with immobilized vitronectin for PAI-1 binding to the same extent as uncleaved vitronectin. The thrombin digested vitronectin fragments were fractionated by SDS-PAGE and analyzed by PAI-1 ligand binding. The smallest fragment (Mr 38,000) retained PAI-1 binding function, and sequence analysis demonstrated that this fragment contained the NH2-terminus of bovine vitronectin. These results suggest that the high-affinity binding site for activated PAI-1 is located in the NH2-terminal region of the bovine vitronectin molecule.  相似文献   

11.
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity.  相似文献   

12.
Corneal epithelial cells secrete tissue plasminogen activator (t-PA), urokinase type plasminogen activator (u-PA) and their inhibitor (PAI), whereas these cell types in other tissues are known to secrete only u-PA hitherto. Endothelial cells in the cornea produce mostly u-PA and only small amounts of t-PA and PAI which remain confined in the cellular compartment contrary to the situation in the vascular endothelial cells where they are liberated into the circulation in the order PAI greater than t-PA greater than U-PA. These unique features of activator/inhibitor secretion and production may play an important role in the remodeling of the corneal matrix.  相似文献   

13.
W P Fay  W G Owen 《Biochemistry》1989,28(14):5773-5778
Plasminogen activator inhibitor (PAI) was purified in active form from porcine platelets under nondenaturing conditions. The purified inhibitor (Mr 47,000) reacts with tissue-type plasminogen activator (t-PA), urokinase (UK), and activated protein C (APC) to yield both SDS-stable complexes and a modified PAI of slightly reduced molecular weight. The second-order rate constants for the inhibition of t-PA and UK by PAI are 3.5 X 10(7) and 3.4 X 10(7) M-1 s-1, respectively. Activated protein C reacts with PAI with a second-order rate constant of 1.1 X 10(4) M-1 s-1. This rate is not accelerated by protein S, phospholipid, and calcium, or heparin. It is concluded that (1) PAI can function as both inhibitor and substrate of its target proteases, (2) if APC promotes fibrinolysis via inactivation of PAI, then APC must be present in concentrations several orders of magnitude greater than t-PA, or the interaction of APC and PAI must be accelerated by presently unknown mechanisms, and (3) in the absence of heparin, platelet PAI is the most rapid inhibitor of APC yet described.  相似文献   

14.
Plasminogen activator inhibitor-1 (PAI-1) and vitronectin are cofactors involved in pathological conditions such as injury, inflammation, and cancer, during which local levels of PAI-1 are increased and the active serpin forms complexes with vitronectin. These complexes become deposited into surrounding tissue matrices, where they regulate cell adhesion and pericellular proteolysis. The mechanism for their co-localization has not been elucidated. We hypothesize that PAI-1-vitronectin complexes form in a stepwise and concentration-dependent fashion via 1:1 and 2:1 intermediates, with the 2:1 complex serving a key role in assembly of higher order complexes. To test this hypothesis, sedimentation velocity experiments in the analytical ultracentrifuge were performed to identify different PAI-1-vitronectin complexes. Analysis of sedimentation data invoked a novel multisignal method to discern the stoichiometry of the two proteins in the higher-order complexes formed (Balbo, A., Minor, K. H., Velikovsky, C. A., Mariuzza, R. A., Peterson, C. B., and Schuck, P. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 81-86). Our results demonstrate that PAI-1 and vitronectin assemble into higher order forms via a pathway that is triggered upon saturation of the two PAI-1-binding sites of vitronectin to form the 2:1 complex. This 2:1 PAI-1-vitronectin complex, with a sedimentation coefficient of 6.5 S, is the key intermediate for the assembly of higher order complexes.  相似文献   

15.
Phorbol myristate acetate (PMA) added to human synovial fibroblast cultures caused a dose-dependent increase in the production of plasminogen activator inhibitor-type 1 (PAI-1). In addition, PMA inhibited endogenous and interleukin-1 (IL-1) induced plasminogen activator (PA) activity, while increasing mRNA PAI-1 levels. Other protein kinase C (PKC) activators, mezerein and teleocidin B4, caused similar effects. The simultaneous addition of the PKC antagonists, H-7 or staurosporine, prevented the inhibition of PA activity by PMA. This study shows that activation of PKC inhibits PA and stimulates PAI production in human synovial fibroblasts. These results suggest that activation of PKC may play an important role in regulating increased PA production associated with joint destruction in rheumatoid arthritis (RA).  相似文献   

16.
Vitronectin immobilized onto polystyrene microtiter wells was demonstrated to specifically bind plasminogen in a concentration-dependent manner, yielding an estimated KD = 0.4 microM. Heparin only moderately interfered with the vitronectin-plasminogen interaction, whereas high concentrations of 6-amino-hexanoic acid inhibited binding. Utilizing a ligand-blotting procedure in which plasminogen was reacted with proteolytic fragments of vitronectin, transblotted onto nitrocellulose, the plasminogen-binding site of vitronectin was localized to the heparin-binding domain of the adhesive protein. Moreover, vitronectin was found to inhibit in a dose-dependent fashion the fibrin(ogen)-induced activation of plasminogen by tissue plasminogen activator. These results provide the first evidence for a novel vitronectin-mediated control of plasminogen activation potentially relevant for directional clot-lysis and plasmin-dependent proteolysis in extracellular matrices.  相似文献   

17.
Total cellular polyadenylated RNA [poly(A)+ RNA] was prepared after guanidinium thiocyanate extraction of frozen brain tissue from age-matched normal and Down's-syndrome (trisomy 21) human foetuses. Poly(A)+ RNA populations were analysed by translation in vitro, followed by two-dimensional gel analysis by using both isoelectric focusing (ISODALT system) and non-equilibrium pH-gradient electrophoresis (BASODALT system) as the first-dimension separation. The relative concentrations of poly(A)+ RNA species coding for seven translation products were significantly altered in Down's syndrome, as determined by both visual comparisons of translation-product fluorograms from normal and Down's-syndrome samples and by quantitative radioactivity determination of individual translation products. The relative concentrations of mRNA species coding for two proteins (68 kDa and 49 kDa) were increased in Down's syndrome and may represent genes located on chromosome 21. The relative concentrations of mRNA species coding for five proteins (37 kDa, 35 kDa, 25.5 kDa, 24.5 kDa, 23 kDa) were decreased in Down's syndrome, these probably representing secondary effects of the trisomy. Six Down's-syndrome-linked translation products (49 kDa, 37 kDa, 33 kDa, 25.5 kDa, 24.5 kDa, 23 kDa) did not migrate with appreciable amounts of cellular proteins on two-dimensional gels and hence may represent either proteins of high turnover rates or those that are post-translationally modified in vivo. One translation product (68 kDa) comigrated with a major cellular protein species, which was identified as a 68 kDa microtubule-associated protein by limited peptide mapping. The significance of these changes is discussed in relation to the mechanisms whereby the Down's-syndrome phenotype is expressed in the human brain.  相似文献   

18.
mRNA levels for urokinase type plasminogen activator (uPA), tissue type plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator inhibitor-2 (PAI-2) were examined in human diploid (neonatal foreskin) fibroblasts grown in 200-ml microcarrier suspension culture. Four different substrates were used. These included gelatin-coated polystyrene plastic, DEAE-dextran, glass-coated polystyrene plastic and uncoated polystyrene plastic. Our previous studies have shown that culture fluids from diploid fibroblasts grown on DEAE-dextran contained higher levels of plasminogen-dependent fibrinolytic activity than culture fluids from the same cells grown on other substrates. The increased plasminogen activator activity was due largely to elevated amounts of tPA (In Vitro Cell. Develop. Biol. 22: 575–582, 1986). The present study shows that there is a corresponding elevation of tPA mRNA in diploid fibroblasts cultured on DEAE-dextran relative to the other substrates. There does not appear to be any difference in uPA mRNA or in mRNA for PAI-1 or PAI-2 produced by the same cells on the four substrates. These data suggest that the influence of the substrate on plasminogen activator production is mediated at the genetic level.  相似文献   

19.
20.
High levels of the plasminogen activators, but also their inhibitor, plasminogen activator inhibitor 1 (PAI-1), have been documented in neovascularization of severe ocular pathologies such as diabetic retinopathy or age-related macular degeneration (AMD). AMD is the primary cause of irreversible photoreceptors loss, and current therapies are limited. PAI-1 has recently been shown to be essential for tumoral angiogenesis. We report here that deficient PAI-1 expression in mice prevented the development of subretinal choroidal angiogenesis induced by laser photocoagulation. When systemic and local PAI-1 expression was achieved by intravenous injection of a replication-defective adenoviral vector expressing human PAI-1 cDNA, the wild-type pattern of choroidal angiogenesis was restored. These observations demonstrate the proangiogenic activity of PAI-1 not only in tumoral models, but also in choroidal experimental neovascularization sharing similarities with human AMD. They identify therefore PAI-1 as a potential target for therapeutic ocular anti-angiogenic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号