首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA clone for the membrane form of guanylate cyclase has been isolated from the testis of the sea urchin Strongylocentrotus purpuratus. An open reading frame predicts a protein of 1125 amino acids including an apparent signal peptide of 21 residues; a single transmembrane domain of 25 amino acids divided the mature protein into an amino-terminal, extracellular domain of 485 amino acids and a carboxyl domain of 594 intracellular amino acids. Three potential Asn-linked glycosylation sites were present in the proposed extracellular domain. The deduced protein sequence was homologous to the protein kinase family and contained limited but significant regions of identity with a low molecular weight atrial natriuretic peptide receptor. The carboxyl region (202 amino acids) was 42% identical with a subunit of the cytoplasmic form of guanylate cyclase recently cloned from bovine lung (Koesling, D., Herz, J., Gausepohl, H., Niroomand, F., Hinsch, K.-D., Mulsch, A., Bohme, E., Schultz, G., and Frank, R. (1988) FEBS Lett. 239, 29-34). Therefore, the membrane form of guanylate cyclase is a member of an apparently large family of proteins that includes the low molecular weight atrial natriuretic peptide receptor, the soluble form of guanylate cyclase and protein kinases.  相似文献   

2.
The major class of atrial natriuretic peptide (ANP) receptors was isolated from cultured vascular smooth muscle cells, and a partial amino acid sequence was obtained. This allowed the isolation of cDNA clones from which the entire amino acid sequence was established. The smooth muscle cell ANP receptor appears to be synthesized as a 537-amino acid precursor with an N-terminal membrane translocation signal. The mature form consists of 496 amino acids with a single potential transmembrane domain predicting a 37-amino acid cytoplasmic domain and a large, acidic, extracellular domain low in cysteine and probably containing attached carbohydrate. The receptor is therefore similar in structure to the growth factor receptors but notably lacks repetitive cysteine-rich domains and has a relatively small intracellular domain. Expression of the cloned receptor in Xenopus oocytes elicited high affinity, membrane-associated binding sites for ANP and for truncated and internally deleted analogs of ANP. These results reflect the ligand binding specificity found for the major class of ANP receptors on smooth muscle cells and thus provide additional evidence that two distinct ANP receptors exist since ANP receptor-coupled guanylate cyclase activity exhibits a very different ANP analog specificity.  相似文献   

3.
Hormones and sensory stimuli activate serpentine receptors, transmembrane switches that relay signals to heterotrimeric guanine nucleotide-binding proteins (G proteins). To understand the switch mechanism, we subjected 93 amino acids in transmembrane helices III, V, VI, and VII of the human chemoattractant C5a receptor to random saturation mutagenesis. A yeast selection identified 121 functioning mutant receptors, containing a total of 523 amino acid substitutions. Conserved hydrophobic residues are located on helix surfaces that face other helices in a modeled seven-helix bundle (Baldwin, J. M., Schertler, G. F., and Unger, V. M. (1997) J. Mol. Biol. 272, 144-164), whereas surfaces predicted to contact the surrounding lipid tolerate many substitutions. Our analysis identified 25 amino acid positions resistant to nonconservative substitutions. These appear to comprise two distinct components of the receptor switch, a surface at or near the extracellular membrane interface and a core cluster in the cytoplasmic half of the bundle. Twenty-one of the 121 mutant receptors exhibit constitutive activity. Amino acids substitutions in these activated receptors predominate in helices III and VI; other activating mutations truncate the receptor near the extracellular end of helix VI. These results identify key elements of a general mechanism for the serpentine receptor switch.  相似文献   

4.
Many hormones and sensory stimuli signal through a superfamily of seven transmembrane-spanning receptors to activate heterotrimeric G proteins. How the seven transmembrane segments of the receptors (a molecular architecture of bundled alpha-helices conserved from yeast to man) work as "on/off" switches remains unknown. Previously, we used random saturation mutagenesis coupled with a genetic selection in yeast to determine the relative importance of amino acids in four of the seven transmembrane segments of the human C5a receptor (Baranski, T. J., Herzmark, P., Lichtarge, O., Gerber, B. O., Trueheart, J., Meng, E. C., Iiri, T., Sheikh, S. P., and Bourne, H. R. (1999) J. Biol. Chem. 274, 15757-15765). In this study, we evaluate helices I, II, and IV, thereby furnishing a complete mutational map of the seven transmembrane helices of the human C5a receptor. Our analysis identified 19 amino acid positions resistant to non-conservative substitutions. When combined with the 25 essential residues previously identified in helices III and V-VII, they delineate two distinct components of the receptor switch: a ligand-binding surface at or near the extracellular surface of the helix bundle and a core cluster in the cytoplasmic half of the bundle. In addition, we found critical amino acids in the first and second helices that are predicted to face the lipid membrane. These residues form an extended surface that might mediate interactions with lipids and other membrane proteins or function as an oligomerization domain with other receptors.  相似文献   

5.
A recombinant vaccinia virus has been used to direct the expression of the atrial natriuretic peptide clearance receptor (ANP C-receptor) in mammalian cell lines normally deficient in this protein. The recombinant receptor binds 125I-ANP-(102-126) in a specific and saturable manner and carboxyl-terminal truncated and internal-deleted ANP analogs bind to this site with high affinity. Following the covalent attachment of 125I-ANP-(102-126) to the recombinant ANP C-receptor, the protein exhibits an electrophoretic mobility identical to that of the native ANP C-receptor of cultured vascular cells. Expression of the ANP C-receptor in heterologous cells does not affect ANP-stimulated cyclic GMP accumulation, confirming previous reports that this novel ANP receptor subpopulation is not coupled to cyclic GMP metabolism. Furthermore, specific antisera, generated by inoculating rabbits with living recombinant virus, block 125I-ANP binding to the ANP C-receptor but do not inhibit ANP stimulation of cyclic GMP, supporting the existence of two receptor subpopulations that are functionally and immunologically distinct.  相似文献   

6.
The platelet-derived growth factor (PDGF) receptor is usually anchored to the plasma membrane through a membrane-spanning hydrophobic amino acid sequence that splits the molecule into two approximately equal pieces, an amino-terminal external domain that contains the binding site for PDGF and a carboxyl-terminal cytoplasmic domain that includes the tyrosine kinase coding sequences. Here we report the expression of a truncated PDGF receptor that consists of the extracellular domain without the transmembrane and cytoplasmic domains. Unexpectedly, this form of the receptor that lacks a hydrophobic membrane-anchoring sequence was bound to the membrane and was not secreted into the culture media. Conventional methods to dissociate noncovalent protein-protein interactions failed to release the protein from the membrane. When the transmembrane and cytoplasmic sequences were artificially deleted from the PDGF receptor, the truncated extracellular domain was anchored to the membrane through phospholipids and could be released by phospholipase C treatment. This truncated form of the receptor bound PDGF with an affinity 5-20-fold lower than the full-length receptor.  相似文献   

7.
The primary amino acid sequence of contactin, a neuronal cell surface glycoprotein of 130 kD that is isolated in association with components of the cytoskeleton (Ranscht, B., D. J. Moss, and C. Thomas. 1984. J. Cell Biol. 99:1803-1813), was deduced from the nucleotide sequence of cDNA clones and is reported here. The cDNA sequence contains an open reading frame for a 1,071-amino acid transmembrane protein with 962 extracellular and 89 cytoplasmic amino acids. In its extracellular portion, the polypeptide features six type 1 and two type 2 repeats. The six amino-terminal type 1 repeats (I-VI) each consist of 81-99 amino acids and contain two cysteine residues that are in the right context to form globular domains as described for molecules with immunoglobulin structure. Within the proposed globular region, contactin shares 31% identical amino acids with the neural cell adhesion molecule NCAM. The two type 2 repeats (I-II) are each composed of 100 amino acids and lack cysteine residues. They are 20-31% identical to fibronectin type III repeats. Both the structural similarity of contactin to molecules of the immunoglobulin supergene family, in particular the amino acid sequence resemblance to NCAM, and its relationship to fibronectin indicate that contactin could be involved in some aspect of cellular adhesion. This suggestion is further strengthened by its localization in neuropil containing axon fascicles and synapses.  相似文献   

8.
Two cDNAs encoding the receptor for murine granulocyte colony-stimulating factor (G-CSF) were isolated from a CDM8 expression library of mouse myeloid leukemia NFS-60 cells, and their nucleotide sequences were determined. Murine G-CSF receptor expressed in COS cells could bind G-CSF with an affinity and specificity similar to that of the native receptor expressed by mouse NFS-60 cells. The amino acid sequence encoded by the cDNAs has demonstrated that murine G-CSF receptor is an 812 amino acid polypeptide (Mr, 90,814) with a single transmembrane domain. The extracellular domain consists of 601 amino acids with a region of 220 amino acids that shows a remarkable similarity to rat prolactin receptor. The cytoplasmic domain of the G-CSF receptor shows a significant similarity with parts of the cytoplasmic domain of murine interleukin-4 receptor. A 3.7 kb mRNA coding for the G-CSF receptor could be detected in mouse myeloid leukemia NFS-60 and WEHI-3B D+ cells as well as in bone marrow cells.  相似文献   

9.
In our preceding paper [Ratnam, M., Sargent, P. B., Sarin, V., Fox, J. L., Le Nguyen, D., Rivier, J., Criado, M., & Lindstrom, J. (1986) Biochemistry (preceding paper in this issue)], we presented results from peptide mapping studies of purified subunits of the Torpedo acetylcholine receptor which suggested that the sequence beta 429-441 is on the cytoplasmic surface of the receptor. Since this finding contradicts earlier theoretical models of the transmembrane structure of the receptor, which placed this sequence of the beta subunit on the extracellular surface, we investigated the location of the corresponding sequence (389-408) and adjacent sequences of the alpha subunit by a more direct approach. We synthesized peptides including the sequences alpha 330-346, alpha 349-364, alpha 360-378, alpha 379-385, and alpha 389-408 and shorter parts of these peptides. These peptides corresponded to a highly immunogenic region, and by using 125I-labeled peptides as antigens, we were able to detect in our library of monoclonal antibodies to alpha subunits between two and six which bound specifically to each of these peptides, except alpha 389-408. We obtained antibodies specific for alpha 389-408 both from antisera against the denatured alpha subunit and from antisera made against the peptide. These antibodies were specific to alpha 389-396. In binding assays, antibodies specific for all of these five peptides bound to receptor-rich membrane vesicles only after permeabilization of the vesicles to permit access of the antibodies to the cytoplasmic surface of the receptors, suggesting that the receptor sequences which bound these antibodies were located on the intracellular side of the membrane. Electron microscopy using colloidal gold to visualize the bound antibodies was used to conclusively demonstrate that all of these sequences are exposed on the cytoplasmic surface of the receptor. These results, along with our previous demonstration that the C-terminal 10 amino acids of each subunit are exposed on the cytoplasmic surface, show that the hydrophobic domain M4 (alpha 409-426), previously predicted from hydropathy profiles to be transmembranous, does not, in fact, cross the membrane. Further, these results show that the putative amphipathic transmembrane domain M5 (alpha 364-399) also does not cross the membrane. Our results thus indicate that the transmembrane topology of a membrane protein cannot be deduced strictly from the hydropathy profile of its primary amino acid sequence. We present a model for the transmembrane orientation of receptor subunit polypeptide chains which is consistent with current data.  相似文献   

10.
The guanylate cyclase/receptor family of proteins   总被引:5,自引:0,他引:5  
Guanylate cyclase, which catalyzes the formation of cGMP from GTP, exists in both the soluble and particulate fractions of cells. At least two different cellular compartments for the particulate enzyme exist: the plasma membrane and cytoskeleton. The enzyme form found in the soluble fraction is a heterodimer that can be regulated by free radicals and nitrovasodilators, whereas the membrane form exists as a single-chain polypeptide that can be regulated by various peptides. These peptides include resact and speract obtained from eggs and atrial natriuretic peptides (ANP). The species of guanylate cyclase present in cytoskeletal fractions resists solubilization with non-ionic detergents; its structural properties are not yet known. cDNAs encoding the membrane form of guanylate cyclase have been isolated from different tissues and species, and in all cases the DNA sequences predict a protein containing a single transmembrane domain. The carboxyl (intracellular) domain is highly conserved from sea urchins through mammals, whereas the extracellular domain (amino terminus) varies considerably. The predicted amino acid sequences demonstrate that the membrane form of guanylate cyclase is a member of a diverse and complex family of proteins that includes a low molecular weight ANP receptor, protein kinases, and the cytoplasmic form of guanylate cyclase. cDNA encoding a membrane form of the enzyme from mammalian tissues has been expressed in cultured cells, and the expressed guanylate cyclase specifically binds ANP and is activated by ANP. The membrane form of guanylate cyclase, then, serves as a cell surface receptor, representing the first recognized protein to directly catalyze formation of a low molecular weight second messenger in response to ligand binding.  相似文献   

11.
T K Vu  D T Hung  V I Wheaton  S R Coughlin 《Cell》1991,64(6):1057-1068
We isolated a cDNA encoding a functional human thrombin receptor by direct expression cloning in Xenopus oocytes. mRNA encoding this receptor was detected in human platelets and vascular endothelial cells. The deduced amino acid sequence revealed a new member of the seven transmembrane domain receptor family with a large amino-terminal extracellular extension containing a remarkable feature. A putative thrombin cleavage site (LDPR/S) resembling the activation cleavage site in the zymogen protein C (LDPR/I) was noted 41 amino acids carboxyl to the receptor's start methionine. A peptide mimicking the new amino terminus created by cleavage at R41 was a potent agonist for both thrombin receptor activation and platelet activation. "Uncleavable" mutant thrombin receptors failed to respond to thrombin but were responsive to the new amino-terminal peptide. These data reveal a novel signaling mechanism in which thrombin cleaves its receptor's amino-terminal extension to create a new receptor amino terminus that functions as a tethered ligand and activates the receptor.  相似文献   

12.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

13.
We isolated cDNAs encoding a 115 kd human atrial natriuretic peptide (alpha ANP) receptor (ANP-A receptor) that possesses guanylate cyclase activity, by low-stringency hybridization with sea urchin Arbacia punctulata membrane guanylate cyclase probes. The human ANP-A receptor has a 32 residue signal sequence followed by a 441 residue extracellular domain homologous to the 60 kd ANP-C receptor. A 21 residue transmembrane domain precedes a 568 residue cytoplasmic domain with homology to the protein kinase family and to a subunit of the soluble guanylate cyclase. COS-7 cells transfected with an ANP-A receptor expression vector displayed specific [125I]alpha ANP binding, and exhibited alpha ANP stimulated cGMP production. These data demonstrate a new paradigm of cellular signal transduction where extracellular ligand binding allosterically regulates cyclic nucleotide second-messenger production by a receptor cytoplasmic catalytic domain.  相似文献   

14.
We have shown previously (Rondeau, J.-J., McNicoll, N., Gagnon, J., Bouchard, N., Ong, H., and De Léan, A. (1995) Biochemistry 34, 2130-2136) that atrial natriuretic peptide (ANP) stabilizes a dimeric form of the natriuretic peptide receptor A (NPRA) by simultaneously interacting with both receptor subunits. However, the first crystallographic study of unliganded NPRA extracellular domain documented a V-shaped dimer involving a membrane-proximal dimer interface and separate binding sites for ANP on each monomer. We explored the possibility of an alternative A-shaped dimer involving a membrane-distal dimer interface by substituting an unpaired solvent-exposed cysteine for Trp(74) in the amino-terminal lobe of full-length NPRA. The predicted spacing between Trp(74) from both subunits drastically differs, depending on whether the V-shaped (84 A) or the A-shaped (8 A) dimer model is considered. In contrast with the expected results for the reported V-shaped dimer, the NPRA(W74C) mutant was constitutively covalently dimeric. Also, the subunits spontaneously reassociated following transient disulfide reduction by dithiothreitol and reoxidation. However, ANP could neither bind to nor activate NPRA(W74C). Permanent disulfide opening by reduction with dithiothreitol and alkylation with N-ethylmaleimide rescued ANP binding to NPRA(W74C). The NPRA mutant could be maintained as a covalent dimer while preserving its function by crosslinking with the bifunctional alkylating agent phenylenedimaleimides (PDM), the ortho-substituted oPDM being more efficient than mPDM or pPDM. These results indicate that the membrane-distal lobe of the NPRAM extracellular domains are dynamically interfacing in the unliganded state and that ANP binding stabilizes the receptor dimer with more stringent spacing at the dimer interface.  相似文献   

15.
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a type II glycoprotein oriented in the plasma membrane with its amino terminus in the cytoplasm and its carboxy terminus external to the cell. We have previously shown that the membrane insertion of HN protein requires signal recognition particle SRP, occurs cotranslationally, and utilizes the same GTP-dependent step that has been described for secretory proteins, type I proteins, and multispanning proteins (C. Wilson, R. Gilmore, and T. Morrison, Mol. Cell. Biol. 7:1386-1392, 1987; C. Wilson, T. Connolly, T. Morrison, and R. Gilmore, J. Cell Biol. 107:69-77, 1988). The role of the amino-terminal cytoplasmic domain in the faithful membrane insertion of this type II protein was explored by characterizing the membrane integration of a mutant lacking 23 of the 26 amino acids of the cytoplasmic domain. The mutant protein was able to interact with SRP, resulting in translation inhibition, membrane targeting, and membrane translocation, but the efficiency of translocation was considerably lower than for the wild-type HN protein. In addition, a significant proportion of the mutant protein synthesized in the presence of SRP and microsomal membranes was associated with the membrane in an EDTA- and alkali-insensitive manner yet integrated into membranes with its carboxy-terminal domain on the cytoplasmic side of membrane vesicles. Membrane-integrated molecules with this reverse orientation were not detected when the mutant protein was synthesized in the absence of SRP or a functional SRP receptor. Truncated mRNAs encoding amino-terminal segments of the wild-type and mutant proteins were translated to prepare ribosomes bearing arrested nascent chains. The arrested mutant nascent chain, in contrast to the wild-type nascent chain, was also able to insert into membranes in a GTP- and SRP-independent manner. Results suggest that the cytoplasmic domain plays a role in the proper membrane insertion of this type II glycoprotein.  相似文献   

16.
cDNA for the epithelial sialomucin episialin encodes a transmembrane molecule with a large extracellular domain, which mainly consists of repeats of 20 amino acids. Here we confirm the existence of a previously proposed proteolytic cleavage of episialin that occurs in the endoplasmic reticulum (Hilkens, J., and Buijs, F. (1988) J. Biol. Chem. 263, 4215-4222) and show that a similar cleavage takes place in in vitro translation systems. Using in vitro translation of truncated mRNAs, we map the cleavage site to a region located between 71 and 53 amino acids upstream of the transmembrane domain. Analysis of a mutant, in which this region has been deleted, indicates that the cleavage sites used in vitro and in vivo are identical or in close proximity. Both cleavage products remain associated although they are not linked through disulfide bonds. Therefore, the subunit derived from the N terminus, which represents the actual mucin-like domain, remains indirectly anchored to the cell membrane as a result of its interaction with the C-terminal subunit.  相似文献   

17.
Many eukaryotic cell surface proteins are bound to the membrane via the glycosylphosphatidylinositol (GPI) anchor that is covalently linked to their carboxy-terminus. The GPI anchor precursor is synthesized in the endoplasmic reticulum (ER) and post-translationally linked to protein. We cloned a human gene termed PIG-B (phosphatidylinositol glycan of complementation class B) that is involved in transferring the third mannose. PIG-B encodes a 554 amino acid, ER transmembrane protein with an amino-terminal portion of approximately 60 amino acids on the cytoplasmic side and a large carboxy-terminal portion of 470 amino acids within the ER lumen. A mutant PIG-B lacking the cytoplasmic portion remains active, indicating that the functional site of PIG-B resides on the lumenal side of the ER membrane. The PIG-B gene was localized to chromosome 15 at q21-q22. This autosomal location would explain why PIG-B is not involved in the defective GPI anchor synthesis in paroxysmal nocturnal hemoglobinuria, which is always caused by a somatic mutation of the X-linked PIG-A gene.  相似文献   

18.
Deletion and insertion mutants of the multidrug transporter   总被引:5,自引:0,他引:5  
The multidrug transporter is a 170,000-dalton membrane glycoprotein which confers multidrug resistance through its activity as an ATP-dependent efflux pump for hydrophobic, cytotoxic drugs. To determine the essential structural components of this complex membrane transporter we have altered an MDR1 cDNA in an expression vector by deletion and insertion mutations. The structure of the transporter deduced from its amino acid sequence suggests that it consists of two homologous, perhaps functionally autonomous, halves each with six transmembrane segments and a cytoplasmic ATP-binding domain. However, several carboxyl-terminal deletions, one involving 53 amino acids, the second removing 253 amino acids, and an internal deletion within the carboxyl-terminal half of the molecule, totally eliminate the ability of the mutant transporter to confer drug resistance. An internal deletion of the amino-terminal half, which removed residues 140-229, is also nonfunctional. Small carboxylterminal deletions of up to 23 amino acids leave a functional transporter, although the removal of 23 COOH-terminal amino acids reduces its ability to confer colchicine resistance. Insertions of 4 amino acids in a transmembrane domain, and in one of the two ATP-binding regions, have no effect on activity. These studies define some of the limits of allowable deletions and insertions in the MDR1 gene, and demonstrate the requirement for two intact halves of the molecule for a functional multidrug transporter.  相似文献   

19.
cDNAs encoding Na,K-ATPase beta-subunits containing deletions in the cytoplasmic domain or in the single membrane-spanning domain of the molecule were constructed and expressed in mouse L cells to determine the effect(s) of deletions in these domains on alpha/beta-subunit assembly and intracellular targeting. Avian beta-subunits lacking some or all of the cytoplasmic domain (endodomain) assemble with the endogenous mouse alpha-subunit and are correctly transported to the plasma membrane. Mutants containing deletions in the transmembrane domain were constructed by fusing portions of cDNAs encoding the amino-terminal one-third of human beta-subunit deletion mutants with avian beta-subunit cDNA encoding the carboxyl two-thirds of the molecule. A deletion of 3 amino acids in transmembrane domain resulted in correct alpha/beta-subunit assembly and localization to the plasma membrane. In contrast, deletions of 5 or more amino acids in the transmembrane domain prevented expression of the beta-subunit at the cell surface and resulted in the accumulation of these molecules in the ER. In spite of these targeting differences, all beta-subunit mutants capable of membrane insertion were also able to assemble with the alpha-subunit. These results suggest that the specificity for alpha/beta assembly resides in the ectodomains of the subunits.  相似文献   

20.
The alpha 6 beta 4 complex is a member of the integrin superfamily of adhesion receptors. A human keratinocyte lambda gt11 cDNA library was screened using a monoclonal antibody directed against the beta 4 subunit. Two cDNAs were selected and subsequently used to isolate a complete set of overlapping cDNA clones. The beta 4 subunit consists of 1778 amino acids with a 683 amino acid extracellular domain, a 23 amino acid transmembrane domain and an exceptionally long cytoplasmic domain of 1072 residues. The deduced amino-terminal sequence is in good agreement with the published amino-terminal sequence of purified beta 4. The extracellular domain contains five potential N-linked glycosylation sites and four cysteine-rich homologous repeat sequences. The extracellular part of the beta 4 subunit sequence shows 35% identify with other integrin beta subunits, but is the most different among this class of molecules. The transmembrane region is poorly conserved, whereas the cytoplasmic domain shows no substantial identity in any region to the cytoplasmic tails of the known beta sequences or to other protein sequences. The exceptionally long cytoplasmic domain suggests distinct interactions of the beta 4 subunit with cytoplasmic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号