首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nitrogen (N) derived from both the soil during current-year uptake, and the withintree pool of storage N was distinguished in two groups of Serr walnut trees using labeled fertilizer (15N-depleted ammonium sulfate) applied in different years. Mass spectrometric analysis of N in xylem sap collected periodically in spring allowed quantification of the relative contributions of N from storage and current season uptake and the transition in N usage from previously assimilated (storage) N to the onset of current season uptake of soil N. N derived from storage accounted for > 50% of the xylem sap N during the staminate and pistillate bloom periods and throughout the period of spur leaf expansion.  相似文献   

2.
A leafminer of the Nearctic genus Coptodisca Walsingham (Lepidoptera: Heliozelidae), a species of potential economic interest, is reported for the first time from Europe, infesting the black (Juglans nigra L.) and the common walnut (Juglans regia L.). Mines were collected since September of 2010 in several sites of two Italian regions (Campania and Lazio). The species is rather similar to Coptodisca juglandella (Chambers), the only Coptodisca known to attack walnuts, but at present, an unambiguous identification cannot be provided because of the unsatisfactory characterization of this leafminer and congeneric species. Three generations were recorded per year and leafminers overwinter as mature larvae. The first adults emerged in May–June while mature larvae of the last generation started the overwintering in September. During the last generation of the year, infestation levels of leaves were 100% in all sampled localities. Several species of parasitoids were reared from infested mines, with specimens belonging to the genus Chrysocharis (Hymenoptera: Eulophidae) being the most frequent parasitoids.  相似文献   

3.
核桃是我国重要的坚果和木本油料树种之一,具有重要的学术研究和经济价值。现代分子标记技术的迅速发展为核桃的种质鉴定、遗传育种、遗传多样性分析、亲缘鉴定等提供了崭新途径。本文主要介绍RFLP、RAPD、AFLP及SSR等几种分子标记技术的主要原理、特点以及在核桃遗传多样性方面的研究进展,分析了分子标记在核桃遗传多样性研究中的主要问题,并对其发展提出了展望。  相似文献   

4.
Architectural analysis of 840 Slovenian walnut (Juglans regia L.) genotypes was performed to determine the most typical and frequent morphological types and to evaluate their vegetative and generative potential. Four branching and fruiting patterns (I-IV) were detected. A 3-year-old fruiting branch, consisting of a 3-year-old shoot plus corresponding 2-year-old and 1-year-old shoots, was used as a structural unit for quantitative analysis. In the intermediate fruit-bearing types with mesotonic and acrotonic branching pattern (types II and III), the total lengths of 3-, 2- and 1-year-old shoots were 385 and 380 cm, respectively, compared with 275 and 253 cm in the terminal and lateral-fruiting types (types I and IV). In type I, 1-year-old shoots had significantly fewer nodes than in other types. In addition, they had a thinner basal diameter than types III and IV, and their angles were the most erect (39 degrees ). Only 0.4 out of 3.6 1-year-old shoots were flowering with one mixed bud with 1.9 female flowers. In type IV, 2-year-old shoots had significantly more nodes and a larger basal diameter than other types. One-year-old shoots in type IV are thicker than those in other types. Ratios between the number of flowering and the total number of 1-year-old shoots were 0.7 in type IV, 0.6 in type III, 0.5 in type II and 0.1 in type I. On 1-year-old shoots in type IV, 1.7 mixed buds with a mean of three female inflorescences per bud were counted. Consequently, the generative potential is highest in type IV and lowest in type I. In types II and III, growth and the ability to bear fruits are more balanced.  相似文献   

5.
Shoots of the hybrid walnut Juglans nigra x Juglans regia contained serotonin in the micromole range and indole-3-acetic acid (IAA) in the nanomole range. The serotonin level fell by 40 % in 12 h in auxin (IBA) treated whole shoots and then reincreased to a maximum (50 %over the control) after 36 h. The same pattern was followed in the top portions of the shoot but in the shoot bases, serotonin always remained under the control level. The early decrease of serotonin was correlated with an increase in IAA-aspartate. The early decrease and peaking of the serotonin level preceded and corresponded to the increase and peaking of free IAA in the shoot bases. The initial serotonin pool in treated-to-root shoots might thus suffice for the biosynthesis of IAA and IAA-conjugated compounds. Because of its auxin-like properties, the early serotonin peak might be taken into consideration as an endogenous auxin signal for rooting in the present material. If this turns out to be so, the rooting signal for the shoot bases necessarily should come from the apices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
为了探索核桃提质增效新途径,该研究采用管道输液滴干技术,对‘辽核’核桃树进行水、肥、药一体化管理,将管道输液滴干处理与土壤施肥处理、常规管理进行对比,测定叶片 SPAD 值、叶面积、新梢长度、新梢粗度、干周、土壤含水量、单株产量、单果重、出仁率、黑果率等指标。结果表明:管道输液滴干处理的叶片SPAD 值比土壤施肥处理和常规管理分别提高了28.37%和53.23%;核桃叶片叶面积值分别提高了18.27%和51.54%;新梢长度分别提高了7.03%和13.73%;新梢粗度分别提高了21.92%和27.14%;干周分别提高了20.52%和24.28%;0~20 cm 土层的土壤含水量分别增加了8.66%和8.52%;单株产量分别提高了21.62%和73.08%;单果重分别提高了14.55%和23.53%;出仁率分别提高了11.45%和12.37%;黑果率分别降低了88.76%和91.55%。这说明管道输液滴干技术可以促进树体生长,提高核桃产量和果实品质以及抗病性,降低果实的黑果率,确保核桃丰产稳产。该研究结果能达到既节水、省工,又高效利用肥料、农药,提高核桃产量和品质的目标,从而为管道输液滴干技术在果木生产上的推广应用提供了依据。  相似文献   

7.
The organogenetic cycle of shoots on main branches of 4-year-old Juglans regia trees was studied. Mono- and bicyclic floriferous and vegetative annual shoots were analysed. Five parent annual shoot types were sampled between October 1992 and August 1993. Organogenesis of summer growth units was monitored between 16 Jun. and 3 Aug. 1993. Variations over time in the number of nodes, cataphylls and embryonic green leaves of terminal buds were studied. The number of nodes of parent shoot buds was compared with the number of nodes of shoots derived from parent shoot buds. The spring growth units of mono- and bicyclic shoots consist exclusively of preformed leaves which were differentiated, respectively, during the spring flush of growth (mid-April until mid-May) or the summer flush of growth (mid-June until early August) in the previous growing season. Thus, winter buds may consist of flower and leaf primordia differentiated in two different periods during annual shoot extension. The summer growth units of bicyclic shoots consist of preformed leaves that were differentiated in spring buds during the spring flush of growth in the current growing season. Bud morphology is compared between spring and summer shoots.  相似文献   

8.
Two-year old nectarine trees (Prunus persica, Batsch, var. nectarina, cv. Starkredgold on GF305 rootstock) planted in pots each received five applications of 1.0 g 15N labelled urea either from mid May to mid July (early uptake) or from mid August to the beginning of October (late uptake). All trees were supplied with a corresponding amount of unlabelled urea when they did not receive the labelled N. In autumn, all abscised leaves were collected and during winter randomly selected trees were harvested and divided into main organs. The remaining trees were transplanted into similar pots filled with sand; they received no N fertiliser and were harvested in May to evaluate the remobilisation of N. Total N and 15N abundance were determined in each organ. Nectarine trees took up similar amounts of N in the 'early' and in the 'late' period; however, more labelled nitrogen was recovered in the perennial organs during the winter when trees received the labelled N in the 'late' than in the 'early' period. Some 73–80% of the N present in the dormant trees was stored in the roots, which contained almost twice the amount of labelled N taken up 'late' than that absorbed 'early'. Nitrogen for spring growth was remobilised predominantly from the roots and accounted for some 43–49% of the labelled N recovered in the tree during winter. Results suggest that the nitrogen taken up 'late' in the season is preferentially stored in roots and used by peach trees to sustain new growth the following spring. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
胡桃枝的化学成分及抑制一氧化氮生成的作用   总被引:2,自引:0,他引:2  
以体外测定各化合物对抑制脂多糖(LPS)和γ干扰素(IFNγ)诱导的RAW264.7大鼠巨噬细胞NO的生成量为活性指标,从核桃中分离得到了5个化合物,分别为2乙氧基胡桃醌(1),3乙氧基胡桃醌(2),regiolone(3),(4S)4hydroxyαtetralone(4)和大黄素(5)。化合物1和2为首次从该植物中分离得到,化合物1具有较强的抑制大鼠巨噬细胞NO生成的作用。化合物1和2均为首次作为天然产物得到。  相似文献   

10.
A closed growth chamber was designed to study the acquisition of autotrophy by seedlings of walnut ( Juglans regia L. cv. Lara) in controlled conditions (22°C, 12-h photoperiod) during the first two months of growth. The chamber consisted of two airtight compartments, in which continuous gas exchange was measured on the aerial and subterranean parts of several batches of tree seedlings. Long-term labelling with 13CO2 was used in the chamber to study the import, distribution, and respiratory losses of photoassimilates (autotrophic carbon) in relation to the partitioning and use of reserves of the maternal seed (heterotrophic carbon). The carbon economy of walnut seedlings was estimated by measurements of gas exchange, carbon content, and 13C/12C isotopic ratio in dry matter and respiratory CO2. The seedlings were entirely heterotrophic for energy and structural growth during the first 21 days after sowing. From day 22, photosynthesis appeared. At day 29, autotrophic carbon accounted for 25% and 30% of respiration in the root and shoot respectively; these proportions increased to 45% and 65% at day 54. The autotrophic carbon was incorporated into the dry matter of the shoot from day 32 but only after day 40 into the dry matter of the taproot. From day 32, the total contribution of heterotrophic carbon decreased regularly, and until day 43, it was essentially used for root growth. Thereafter, the contribution of heterotrophic carbon was negligible, and at day 54 the walnut seedlings were entirely autotrophic.  相似文献   

11.
The model RATP (radiation absorption, transpiration and photosynthesis) is presented. The model was designed to simulate the spatial distribution of radiation and leaf-gas exchanges within vegetation canopies as a function of canopy structure, canopy microclimate within the canopy and physical and physiological leaf properties. The model uses a three-dimensional (3D) representation of the canopy (i.e. an array of 3D cells, each characterized by a leaf area density). Radiation transfer is computed by a turbid medium analogy, transpiration by the leaf energy budget approach, and photosynthesis by the Farquhar model, each applied for sunlit and shaded leaves at the individual 3D cell-scale. The model typically operates at a 20–30 min time step. The RATP model was applied to an isolated, 20-year-old walnut tree grown in the field. The spatial distribution of wind speed, stomatal response to environmental variables, and light acclimation of leaf photosynthetic properties were taken into account. Model outputs were compared with data acquired in the field. The model was shown to simulate satisfactorily the intracrown distribution of radiation regime, transpiration and photosynthetic rates, at shoot or branch scales.  相似文献   

12.
Walnut blackline disease, caused by the walnut strain of the cherry leafroll virus, causes fatal necrosis of the graft union between susceptible, infected scions of Persian walnut (Juglans regia L.) and hypersensitive, resistant rootstocks. A backcross breeding program to transfer hypersensitivity to cherry leafroll virus from the Norther California black walnut (Juglans hindsii (Jeps.)), into Persian walnut was begun in 1987. Hypersensitivity to the virus is inherited as a single, dominant gene. The current procedures for identifying hypersensitive backcross progeny are slow and labor intensive. Bulks of DNA from backcrosses that were either hypersensitive or susceptible to cherry leafroll virus were compared using randomly amplified polymorphic DNA. One random decamer, sequence 5-CTCCTGCCAA-3 (OP-K15), produces a polymorphic fragment of about 720 bp that has about 7% recombination with hypersensitivity to cherry leafroll virus in our backcross populations. The polymorphic fragment was cloned and converted into a restriction fragment length polymorphism to demonstrate that it is a distinct, low-copy sequence.  相似文献   

13.
Gender expression, flowering phenology, reproductive performance and factors affecting fruit set (i.e., flowering synchrony, size and distance to the nearest pollen donor) were investigated in a cultivated population of a wind-pollinated self-compatible heterodichogamous Juglans regia (Juglandaceae). Four flowering morphs, (i.e., protandrous, protogynous, male and female) were observed. The sexual functions of the protandrous and protogynous morphs were almost synchronous; however, they were not reciprocal, and the separation of male and female flowering within most monoecious individuals was not complete. Thus, within-morph mating and geitonogamous pollination may be common. The ratio of protandrous versus protogynous morphs was biased towards the protandrous morph, but the fruit set did not differ between the morphs, suggesting that the fruit set of the protandrous morph could be partly compensated by within-morph pollination. The ratio of the female flower number or fruit number to the total male catkin length was higher in the protogynous morph than in the protandrous morph and did not vary with plant size, suggesting that gender variation was not size dependent and that the sexual function of protandrous morphs was more male biased. Fruit set depended on plant size only for protandrous morphs. The fruit set of individual plants decreased with increasing distance to the nearest pollen donor regardless of morph, possibly because of pollen limitation. The fruit set of individual plants increased with flowering synchrony, indicating that flowering synchrony could affect reproductive success.  相似文献   

14.
核桃(Juglans regia)向南推广种植不可避免地会遇到土壤酸化和缺磷的环境, 这种环境如何影响核桃的生长是生产中需要知晓的基础问题。该文研究了土壤不同pH值对核桃的磷素营养影响以及缺磷对核桃幼苗水分平衡、光合特性和生长的影响。在温室内采用砂培盆栽试验, 研究一年生核桃嫁接幼苗在不同pH值、磷水平基质中的水分关系、光合特性和生长的应对机制。研究设4种处理, 即: 对照(正常供应磷素+ pH 6.0); 正常供应磷素+ pH 3.0; 不添加磷素+ pH 6.0; 不添加磷素+ pH 3.0。结果显示: pH值与磷素对核桃幼苗的影响是两个相互独立的过程, 酸性(pH值3.0)条件下, 核桃幼苗根系生物量降低、根冠比减小, 根系导水率降低, 对磷素的吸收利用减少, 尽管其供磷正常, 但各生长指标及生理指标与磷胁迫条件下反应相似; 两因素具有一定的叠加性, 在磷胁迫条件下, 酸化(pH值3.0)对核桃幼苗的损害进一步加剧。各指标具体变化如下: 酸化及磷胁迫条件下核桃根系水分导度降低, 叶柄木质部结构改变, 导管密度降低, 木质部导管栓塞程度增加, 叶柄导水率下降, 植株水分运输效率降低, 叶片水势降低, 诱导气孔关闭; 气孔导度降低, 光合作用能力下降; 胁迫条件下, 叶绿素荧光参数最大光化学效率低于0.8, 实际光化学效率、光化学淬灭下降, 非光化学淬灭增加, 核桃幼苗受胁迫环境损害, 叶片光系统II光合电子传递活性受到抑制, 光合能力下降。总之, 土壤酸化抑制了核桃幼苗对磷元素的吸收利用, 造成体内缺磷; 磷胁迫及酸化抑制了叶柄木质部的发育, 降低了根系水分导度和叶柄导水率, 干扰了核桃幼苗水分平衡, 通过气孔与非气孔共同调节, 限制了核桃幼苗光合作用, 抑制了核桃幼苗高生长、直径生长及叶面积增加; 但并没有发现土壤酸化和缺磷之间有明显的交互作用。  相似文献   

15.
Four antibiotics were evaluated for their effects on eliminating the hypervirulent Agrobacterium tumefaciens strain C58C1 ATHV RifR (pEHA101)/p35-gus-intron from walnut somatic embryos and on the production of secondary somatic embryos and the transformed somatic embryos. Exposure to 100–1000 mg l−1 of ampicillin, carbenicillin or cefotaxime respectively for up to 60 days did not eliminate the A. tumefaciens while timentin at 500–1000 mg l−1 eradicated it from somatic embryos. One-hour acidified medium treatments and the addition of 100 mg l−1 kanamycin to 500 mg l−1 ampicillin, carbenicillin, cefotaxime or timentin were of little help in eliminating the Agrobacterium. All four antibiotics reduced somatic embryo production, carbenicillin minimally and cefotaxime maximally, especially at higher concentrations, in comparison with antibiotic-free medium. Putative transformed embryos were selected for continued proliferation on a 100 mg l−1 kanamycin-containing medium. Histochemical assessments indicated that more gus-positive somatic embryos, particularly fully gus-positive embryos, regenerated from timentin-containing medium than from other antibiotic-containing media under equivalent conditions. Transformed embryos have been grown and converted into plants and gus activity was observed in whole plants. Received: 13 July 1999 / Revision received: 2 December 1999 / Accepted: 6 December 1999  相似文献   

16.
The dynamics of N uptake and N partitioning in peach (Prunus persica, Batsch) trees of a very early (cv. Flordastar) and a very late (cv. Tudia) fruit ripening varieties grown under a mediterranean climate was assessed during one season. Labelled N was applied to two-year old potted trees which were destructively harvested at regular intervals during the vegetative and reproductive cycle. Tree phenology as well as vegetative and reproductive growth of the two genotypes strongly differed: bud burst started in late January in Flordastar and late March in Tudia. Leaf senescence in Flordastar was almost complete by mid October, while Tudia still retained a significant fraction of leaves at the December harvest. Fruit yield averaged 4.0 and 6.9 kg tree–1 (fresh weight) in cv. Flordastar and Tudia, respectively, and fruit size was within commercial standards for the two genotypes. After growth resumption, shoot and fruit growth mainly relied on N remobilised from reserves, which accounted for 72–80% of total N in new growth. Nitrogen uptake by both genotypes was relatively low in the first month after bud burst, then was more rapid until the end of the season. Total labelled N uptake did not differ between the two genotypes and accounted on average for 65–70% of total N supplied. The kinetics of labelled N uptake were similar in the two varieties despite the great difference in the timing of their fruit ripening. Leaves were the main sink for N during much of the experimental period. The fruits, when present, also used a significant fraction of the absorbed N, which was almost constant until fruit ripening in Flordastar. Nitrogen partitioning to leaves declined progressively after summer, when a greater fraction of the absorbed N was recovered in the twigs, the trunk, the fine roots and especially in the coarse roots. The data provide evidence for guiding the kinetics of N supply to peach orchards under a Mediterranean climate.  相似文献   

17.
In contrast to terrestrial plants, epiphytic tank bromeliads take up nutrients mainly over their tank leaf surface. The form in which nutrients are available in the tanks is determined by the source and the complex interplay between tank microbes, which transform them and the epiphytes that take them up. To elucidate the importance of different nitrogenous compounds for the nitrogen (N) nutrition of Vriesea gigantea from the Atlantic Rainforest, Brazil, N transformation processes in tank water as well as foliar uptake rates were estimated by 15N labelling techniques. Microorganisms actively transformed N compounds in the tank. Specifically, organic N compounds were rapidly mineralized to NH4+, while nitrification was negligible. Plants took up both organic and inorganic N forms, with a clear preference for NH4+. NH4+ comprised the largest and, because of fast mineralization rates, the most constant dissolved N pool in the tank water. Excretion of ureases by the plants together with an unusual uptake kinetic for urea also suggests that urea may be potentially important as an N source.  相似文献   

18.
BACKGROUND AND AIMS: Kaolin applications have been used to mitigate the negative effects of water and heat stress on plant physiology and productivity with variable results, ranging from increased to decreased yields and photosynthetic rates. The mechanisms of action of kaolin applications are not clear: although the increased albedo reduces leaf temperature and the consequent heat stress, it also reduces the light available for photosynthesis, possibly offsetting benefits of lower temperature. The objective of this study was to investigate which of these effects are prevalent and under which conditions. METHODS: A 6% kaolin suspension was applied on well-irrigated and water-stressed walnut (Juglans regia) and almond (Prunus dulcis) trees. Water status (i.e. stem water potential, psi(s)), gas exchange (i.e. light-saturated CO2 assimilation rate, Amax; stomatal conductance, g(s)), leaf temperature (T(l)) and physiological relationships in treated and control trees were then measured and compared. KEY RESULTS: In both species, kaolin did not affect the daily course of psi(s) whereas it reduced Amax by 1-4 micromol CO2 m(-2) s(-1) throughout the day in all combinations of species and irrigation treatments. Kaolin did not reduce g(s) in any situation. Consequently, intercellular CO2 concentration (C(i)) was always greater in treated trees than in controls, suggesting that the reduction of Amax with kaolin was not due to stomatal limitations. Kaolin reduced leaf temperature (T(l)) by about 1-3 degrees C and leaf-to-air vapour pressure difference (VPD(l)) by about 0.1-0.7 kPa. Amax was lower at all values of g(s), T(l) and VPD(l) in kaolin-treated trees. Kaolin affected the photosynthetic response to the photosynthetically active radiation (PAR) in almond leaves: kaolin-coated leaves had similar dark respiration rates and light-saturated photosynthesis, but a higher light compensation point and lower apparent quantum yield, while the photosynthetic light-response curve saturated at higher PAR. When these parameters were used to model the photosynthetic response curve to PAR, it was estimated that the kaolin film allowed 63% of the incident PAR to reach the leaf. CONCLUSIONS: The main effect of kaolin application was the reduction, albeit minor, of photosynthesis, which appeared to be related to the shading of the leaves. The reduction in T(l) and VPD(l) with kaolin did not suffice to mitigate the adverse effects of heat and water stress on Amax.  相似文献   

19.
A field lysimeter study was established with the aim of investigating the effect of nitrogen availability upon drought strain in Norway spruce trees. Forest soil (Typic Udipsamment) was filled in lysimeters 1 m in diameter and 1 m deep. Small trees of Norway spruce from five different clones were planted in the lysimeters. Roofs under the canopy of the trees ensured full control of water and nutrient input. Three levels of nitrogen were given to the trees during five years; ambient rainwater, and five and fifteen times this N concentration, respectively. Additional N was given as NH4NO3 in irrigation water. Mean annual N-addition during the five years corresponded to 5, 27 and 82 kg per ha and year for the three treatments, respectively. During the third and fifth growth season drought was artificially induced. In addition to a watered control, two levels of drought were applied, representing water deprivation for 2 and 3 months, respectively, in 1990 and 3 and 4 months, respectively in 1992. A higher water consumption in the nitrogen fertilized trees during the droughts resulted in a significantly lower pre-dawn shoot water potential compared to the trees receiving ambient rain N. The interaction between drought and nitrogen fertilization was clear also for photosynthesis and transpiration. A decrease in height- and diameter increment caused by drought was most pronounced in the 82 kg N ha–1 yr–1 treatment. A water strain integral showed a strong positive correlation to the needle biomass of the trees. Foliar concentrations of several nutrients decreased significantly with increasing drought strain in the trees. Concentration of potassium and boron were especially low and visual symptoms of deficiency occurred.  相似文献   

20.
氮素形态对树木养分吸收和生长的影响   总被引:25,自引:1,他引:25  
张彦东  白尚斌 《应用生态学报》2003,14(11):2044-2048
由于NH4+-N和NO3--N形态的差异,二者对树木养分吸收和生长发育的影响不同,树木常表现出对NH4+-N和NO3--N的选择性吸收,树种对NH4+-N和NO3--N吸收的偏好特性可能与生长地的土壤pH有关,来自于酸性土壤的树种通常具有喜NHON的特性,而来自于中性或碱性土壤的树种常表现出喜NO3--N的趋势,由于NH4+-N和NO3^--N所带电荷的差异,通常NH4+-N有利于阴离子的吸收,而NO3^--N则促进阳离子的吸收,在有些情况下,NH4+-N会抑制NO3--N的吸收,但抑制的机制目前还不清楚,树木吸收NH4+-N时,引起根际pH下降,相反吸收NO3--N时根际pH升高,根际pH变化可以改变土壤养分的有效性,并影响树木对养分的吸收利用,树木对NH4+-N和NO3--N的生长反应不同,有些喜NH4+-N的针叶树在供应NH4+-N时生长较好,多数植物在同时供应NH4+-N和NO3--N时生长量最大,有些树种在同时供应NH4+-N和NO3--N时也表现出最高的生长,但对于树木类似的研究还少,这一现象对于树木是否具有普遍性还需要大量试验证明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号