首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract: According to their solubilization properties, two classes of acetyl-cholinesterases (AChE) can be detected in the adult rat brain: a "soluble" species (easily solubilized without detergent), and a membrane-bound species (solubilized only in the presence of detergent). The latter was found to be homogeneous by gel filtration (Stokes radius 8.05 ± 0.35 nm) and sucrose gradient centrifugation (9.75 ± 0.2 S) in the presence of Triton X-100. The "soluble" AChE gives three stable species in the presence of the same detergent with Stokes radii and sedimentation constants of 10.9 ± 0.5 nm and 16 ± 2 S; 6.75 ± 0.30 nm and 10.7 ± 0.4 S; 5.37 ± 0.35 nm and 4.37 ± 0.1 S. Co-chromatography and co-sedimentation or the reduction and alkylation of disulfide bridges show that all the soluble species are different from the membrane-bound AChE. The possibility that soluble and membrane-bound AChE are completely different molecules is discussed.  相似文献   

2.
The brain of Tenebrio molitor exhibited marked fluctuations in acetylcholinesterase (AChE) activity throughout metamorphosis. This was true AChE activity, since it was inhibited by high substrate concentrations and by 10 μM of the specific AChE inhibitor BW284C51 [(1,5-bis'4-allyldimethylammoniumphenyl)-pentan-3-one dibromide] but not by iso-OMPA (tetraisopropylpyrophosphoramide), a cholinesterase (but not AChE) inhibitor. The histochemical AChE activity was localized in the neuropile and the nuclear envelope of neurons and glial cells. The enzyme extracted from brains with 1% Triton X-100 and 1 M NaCl sedimented as a single peak in a sucrose density gradient, with a sedimentation coefficient of 5.4S. This single AChE sedimentation peak was mainly due to an amphiphilic dimeric form. AChE activity per brain increased in newly ecdysed pupa. AChE activity per milligram of protein exhibited a peak in the mid-pupa which could be correlated to the increase in ecdysteroid titers. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Attempts were made to solubilize acetylcholinesterase (AChE) from microsomal membranes isolated from rabbit white muscle. The preparative procedure included a step in which the microsomes were incubated in a solution containing high salt concentration (0.6 M KCl). About 15% of the total enzyme activity could be solubilized with dilute buffer. Addition of EDTA (1 mM), EGTA (1 mM) or NaCl (0.5 and 1 M) to the extraction buffer did not improve the solubilization yield. Several non-ionic detergents and biliary salts were then used to bring the enzyme into solution. Triton X-100, C12E9 (dodecylnonaethylenglycol monoether) and biliary salt, above their critical micellar concentration, proved to be very effective as solubilizing agents. The occurrence of multiple molecular forms in detergent-soluble AChE was investigated by means of molecular sieving, centrifugation analysis, and slab gel electrophoresis. Experiments on gel filtration showed that, during the process, half of the enzyme was transformed into aggregates, the rest of the activity appearing as peaks with Stokes radii ranging from 3.7 to 7.9 nm. Both ionic strength and detergent nature modify the number and relative proportion of these peaks. Centrifugation analysis of Triton-saline-soluble AChE yielded molecular forms of 4.8S, 10–11S, and 13.5S, whereas deoxycholate extracts revealed species of 4.8S, 10S, and 15S, providing that gradients were prepared with 0.5 M NaCl. In the absence of salt, forms of 6.5–7.5S, 10S, and 15S were measured. The lightest species was always the predominant form. Slab gel electrophoresis showed several bands (68,000–445,000). The 4.8S component only yielded bands of 65,000–70,000. The results suggest that the monomeric form of AChE (4.8S), the most abundant species in muscle microsomes, has a Stokes radius of 3.3 nm and a molecular weight in the range of 70,000.  相似文献   

4.
Abstract— A study was made of the effect of various solubilization procedures on the release of AChE from electric organ tissue of the electric eel and on the molecular state of the enzyme. The procedures employed included homogenization in different ionic media or in the presence of detergents, etuymic treatment and chemical modification. Studies were performed on intact electroplax, tissue homogenates and membrane fractions. The apparent AChE activity of intact cells, homogenates and membrane fractions was shown to be governed by diffusion-controlled substrate and hydrogen ion gradients, generated by AChE-catalyscd hydrolysis, leading to a lower substrate concentration and a lower pH in the vicinity of the particulate enzyme.
Treatment of homogenates with NaCl solutions or with NaCl solutions containing the nonionic detergent Triton X-100 causes release of the native'molecular forms of the enzyme (primarily the 18 S species) which aggregate at low ionic strength. For optimal extraction both high ionic strength (e.g. 1 M-NaCl) and the detergent are needed AChE is also solubilized by treatment of tissue homogenates with trypsin, bacterial protease or collagenase. The first two enzymes caused its release as an 11 S non-aggregating form, while collagenase also produces a minor non-aggregating - 16 S component. Treatment of tissue homogenates with maleic anhydride causes release of AChE as a non-aggregating 18 S species. On the basis of the solubilization experiments it is concluded that the interaction of AChE with the excitable membrane is primarily electrostatic. The possible orientation of the enzyme within the synaptic gap is discussed.  相似文献   

5.
Acetylcholinesterase (AChE, EC 3.1.1.7) activity of rat gastrocnemius muscle homogenized in 1 M-NaCl and 0.5% Triton X-100 was separated by velocity sedimentation in sucrose gradients into three molecular forms with sedimentation coefficients of about 4S, 10S and 16S. The distribution of homogenate AChE activity among the three peaks was 53, 34 and 13% respectively. The different molecular forms were found to be heterogeneously distributed in subcellular fractions prepared from sucrose homogenates of muscle, as follows: Subfractions of the crude sarcolemmal fraction were prepared by discontinuous sucrose gradient centrifugation. AChE was recovered in the greatest yield and with the highest specific activity in a light density subfraction (0.6/0.8 M-sucrose interface). The AChE activity in this light density subfraction was mainly (81-88%) the 10S form of the enzyme. The velocity sedimentation profiles of the AChE activity in the more dense subfractions were markedly different in that 16S AChE was a major component.  相似文献   

6.
HETEROGENEITY OF ACETYLCHOLINESTERASE IN NEUROBLASTOMA   总被引:2,自引:2,他引:0  
Abstract– Multiple forms of acetylcholine hydrolyzing activity have been observed in Triton X-100 treated homogenates of mouse neuroblastoma cells. All these forms appear to be the true acetylcholinesterase, AChE (EC 3.1.17): they are substrate-inhibited; hydrolyze acetylcholine > acetyl-β-methylcholine ≫ butrylcholine and are preferentially inhibited by specific AChE inhibitors. Almost all of the cell AChE activity is membrane associated, but readily 'solubilized' by Triton X-100 and as such appears free of membrane contamination. With the aid of affinity chromatography the 'solubilized' neuroblastoma AChE has been partially purified (490-fold) to a specific activity of 34,300 nmol/min/mg protein.
Four active neuroblastoma AChE species appear upon acrylamide gel electrophoresis (with MWs of 64,000; 116,000; 186,000 and 284,000) while three species (4S, 6S and 9.6S) have been found upon sucrose gradient sedimentation analysis. We have determined that the 4S form migrates on acrylamide as the 116,000 MW species and the 9.6S form contains, in equal amounts, the 186,000 and 284,000 MW acrylamide species. Numerous active AChE forms are seen on Sepharose 6B chromatography. From comparing the crude, 4S, 9.6S and partially purified AChEs on acrylamide gels, sucrose gradients and Sepharose, mouse neuroblastoma appears to contain active AChE units which are capable of multiple types of dissociation and reassociation. An attempt is made to correlate all the observed AChE forms as well as relate this data to that known about AChE obtained from other sources.  相似文献   

7.
Native molecular forms of acetylcholinesterase (AChE) present in a microsomal fraction enriched in SR of rabbit skeletal muscle were characterized by sedimentation analysis in sucrose gradients and by digestion with phospholipases and proteinases. The hydrophobic properties of AChE forms were studied by phase-partition of Triton X-114 and Triton X-100-solubilized enzyme and by comparing their migration in sucrose gradient containing either Triton X-100 or Brij 96. We found that in the microsomal preparation two hydrophilic 13.5 S and 10.5 S forms and an amphiphilic 4.5 S form exist. The 13.5 S is an asymmetric molecule which by incubation with collagenase and trypsin is converted into a 'lytic' 10.5 S form. The hydrophobic 4.5 S form is the predominant one in extracts prepared with Triton X-100. Proteolytic digestion of the membranes with trypsin brought into solution a significant portion of the total activity. Incubation of the membranes with phospholipase C failed to solubilize the enzyme. The sedimentation coefficient of the amphiphilic 4.5 S form remained unchanged after partial reduction, thus confirming its monomeric structure. Conversion of the monomeric amphiphilic form into a monomeric hydrophilic molecule was performed by incubating the 4.5 S AChE with trypsin. This conversion was not produced by phospholipase treatment.  相似文献   

8.
Acetylcholinesterase (AChE; EC 3.1.1.7) extracted in 1% Triton X-100 from rabbit brain was purified 2,000-fold by chromatography on agarose conjugated with a monoclonal antibody directed against human red blood cell cholinesterase. After elution from the immunoadsorbent with pH 11 buffer, the preparation was purified further by affinity chromatography on phenyltrimethylammonium-Sepharose 4B with decamethonium elution. Overall yield of purified enzyme was 37% of the AChE originally solubilized, with a specific activity of 2,950 units/mg protein. Electrophoresis under reducing conditions in 7.5% sodium dodecyl sulfate polyacrylamide gels revealed only one silver-staining polypeptide band. A streamlined purification procedure enabled the isolation of electrophoretically homogeneous AChE to be completed in fewer than 7 days, at yields exceeding 50%. Electrophoretic analysis of purified AChE indicated an apparent MW of 71,000 for the monomeric subunit. Gel filtration and sucrose density gradient centrifugation in the presence of Triton X-100 showed little difference between the properties of the native and the purified enzyme. The molecular mass of the main species was estimated from the gel filtration and sedimentation data to be 280,000 daltons. Kinetic parameters of the purified protein (Km = 0.16 +/- 0.01 mM) were close to those of the native enzyme (Km = 0.12 +/- 0.01 mM) when examined with acetylthiocholine iodide as substrate. The two-step immunopurification procedure presented in this communication offers a convenient route to homogeneous neural AChE in quantities useful for detailed biochemical and immunochemical study.  相似文献   

9.
Incubation of membranes derived from sarcotubular system of rabbit skeletal muscle with increasing concentrations of Triton X-100 produced both stimulation of the AChE activity and solubilization of this enzyme. Mild proteolytic treatment of microsomal membranes produced a several fold activation of the still membrane-bound acetylcholinesterase (AChE) activity. Attempts were made to solubilize AChE from microsomal membranes by proteolytic treatment. About 30–40% of the total enzyme activity could be solubilized by means of trypsin or papain. Short trypsin treatment of the microsomal membranes produced first an activation of the membrane-bound enzyme followed by solubilization. Incubation of muscle microsomes for a short time with papain yielded a significant portion of soluble enzyme. Membrane-bound enzyme activation was measured after a prolonged incubation period. These results are compared with those of solubilization obtained by treatment of membranes with progressive concentrations of Triton X-100. The occurrence of molecular forms in protease-solubilized AChE was investigated by means of centrifugation analysis and slab gel electrophoresis. Centrifugation on sucrose gradients revealed two main components of 4.4S and 10–11S in either trypsin or papain-solubilized AChE. These components behaved as hydrophilic species whereas the Triton solubilized AChE showed an amphipatic character. Application of slab gel electrophoresis showed the occurrence of forms with molecular weights of 350,000; 175,000; 165,000; 85,000 and 76,000. The stimulation of membrane-bound AChE by detergents or proteases would indicate that most of the enzyme molecules or their active sites are sequestered into the lipid bilayer through lipid-protein or protein-protein interactions and these are broken by proteolytic digestion of the muscle microsomes.  相似文献   

10.
Acetylcholinesterase (AChE) is an enzyme broadly distributed in many species, including parasites. It occurs in multiple molecular forms that differ in their quaternary structure and mode of anchoring to the cell surface. This review summarizes biochemical and immunological investigations carried out in our laboratories on AChE of the helmint, Schistosoma mansoni. AChE appears in S. mansoni in two principal molecular forms, both globular, with sedimentation coefficients of approximately 6.5 and 8 S. On the basis of their substrate specificity and sensitivity to inhibitors, both are "true" acetylcholinesterases. Approximately half of the AChE activity of S. mansoni is located on the outer surface of the parasite, attached to the tegumental membrane via a covalently attached glycosylphosphatidylinositol anchor. The remainder is located within the parasite, mainly associated with muscle tissue. Whereas the internal enzyme is most likely involved in termination of neurotransmission at cholinergic synapses, the role of the surface enzyme remains to be established; there are, however, indications that it is involved in signal transduction. The two forms of AChE differ in their heparin-binding properties, only the internal 8 S form of the AChE being retained on a heparin column. The two forms differ also in their immunological specificity, since they are selectively recognized by different monoclonal antibodies. Polyclonal antibodies raised against S. mansoni AChE purified by affinity chromatography are specific for the parasite AChE, reacting with both molecular forms, but do not recognize AChE from other species. They interact with the surface-localized enzyme on the intact organism, and produce almost total complement-dependent killing of the parasite. S. mansoni AChE is thus demonstrated to be a functional protein, involved in multifaceted activities, which can serve as a suitable candidate for diagnostic purposes, vaccine development, and drug design.  相似文献   

11.
Abstract— In sucrose gradient centrifugation, acetylcholinesterase (AChE, EC 3.1.1.7.) from the rat superior cervical ganglion (SCG) has been found to contain four molecular forms, characterized by their sedimentation coefficients (4 S, 6.5 S, 10 S and 16 S). Homogenization of the ganglia in various media showed that the 4 S enzyme was readily solubilized in water whereas solubilization of the 6.5 S and 10 S forms was quantitative only in media containing Triton X-100. In order to solubilize the 16 S form, high concentrations of salt (NaCl 1 M) and detergent had to be present. AChE analysed by non-denaturing polyacrylamide gel electrophoresis separated into five bands. Although both distribution patterns were stable, i.e. each form or band preserved its characteristic sedimentation or electrophoretic migration when reanalysed, there was no 1:1 correlation between the forms isolated by sedimentation and the bands obtained by electrophoresis: one band might contain more than one form of enzyme, and conversely one form gave rise to several bands. It was therefore impossible to derive molecular weights from electrophoretic migration in non-denaturing gels. However, it could be shown that the results obtained by both methods of analysis were consistent. Acetylcholinesterase from other nervous structures was analysed: in pre- and postganglionic nerves, the main forms were 10 S and 6.5 S, with a small proportion of 4 S; the 16 S form was not detected. In other sympathetic ganglia, the distribution of forms was identical to that of the superior cervical ganglion. In rachidian ganglia, no 16 S form could be found. Following the section of the preganglionic nerve, the acetylcholinesterase activity of the superior cervical ganglion decreased by 50% in 3 days, and then rose again to about 80% of its original value after 2 weeks. These effects mainly reflected variations in the major 4 S and 10 S forms. The 16 S form, in contrast to its disappearance from denervated muscles, increased transiently during the first 2 weeks after denervation, reaching about twice its original activity. A concomitant cytochemical study of normal and denervated ganglia showed that after preganglionic denervation, AChE localized in the sympathetic neurones decreased markedly and remained low even during the recovery phase. During this period a cholinesterasic activity appeared in the perineuronal glia. Controls established that the enzyme synthetized in the glia is AChE.  相似文献   

12.
A high acetylcholinesterase (AChE) activity was found associated with pure cholinergic synaptosomes prepared from Torpedo electric organ. This activity was bound to the presynaptic plasma membrane upon subfractionation on sucrose density gradients. It was not solubilized in the presence of 2 M MgCl2 but in the presence of Triton X 100. This presynaptic AChE activity corresponded to a hydrophobic form of the enzyme with a sedimentation coefficient of 5.5 S in our conditions. More than 80% of the AChE activity of intact synaptosomes was externally oriented. The presynaptic AChE activity could represent as much as 25% of the total activity in Torpedo electric organ.  相似文献   

13.
Velocity sedimentation patterns of acetylcholinesterase (AChE, EC 3.7.1.1) in endplate-free regions of the diaphragm were studied in rats during early postnatal development. A significant amount of 16 S AChE, comprising 20% total activity, was found in endplate-free regions of the diaphragm of 8- and 19-day-old rats. By 32 days after birth, 16 S AChE accounted for less than 5% total AChE activity in endplate-free regions. 16 S AChE is, therefore, not strictly an endplate-specific molecular form. Instead, it becomes restricted to the motor endplate region of the rat diaphragm by the end of the first month of life.  相似文献   

14.
Two acetylcholinesterase (EC 3.1.1.7) membrane forms AChE(m1) and AChE(m2), have been characterised in the honey bee head. They can be differentiated by their ionic properties: AChE(m1) is eluted at 220 mM NaCl whereas AChE(m2) is eluted at 350 mM NaCl in anion exchange chromatography. They also present different thermal stabilities. Previous processing such as sedimentation, phase separation, and extraction procedures do not affect the presence of the two forms. Unlike AChE(m1), AChE(m2) presents reversible chromatographic elution properties, with a shift between 350 to 220 mM NaCl, depending on detergent conditions. Purification by affinity chromatography does not abolish the shift of the AChE(m2) elution. The similar chromatographic behaviour of soluble AChE strongly suggests that the occurrence of the two membrane forms is not due to the membrane anchor. The two forms have similar sensitivities to eserine and BW284C51. They exhibit similar electrophoretic mobilities and present molecular masses of 66 kDa in SDS-PAGE and a sensitivity to phosphatidylinositol-specific phospholipase C in non-denaturing conditions, thus revealing the presence of a glycosyl-phosphatidylinositol anchor. We assume that bee AChE occurs in two distinct conformational states whose AChE(m2) apparent state is reversibly modulated by the Triton X-100 detergent into AChE(m1).  相似文献   

15.
To obtain information about the mode of attachment of amphiphilic monomers of acetylcholinesterase (AChE) in sarcoplasmic reticulum (SR) of skeletal muscle, attempts were made to release the enzyme by alkaline hydroxylamine. About half of the activity measured in microsomes preincubated with 0.5% (w/v) Triton X-100 is detached by incubation of SR with bicarbonate buffer (pH 10.5). Addition of 1 M hydroxylamine to the alkaline buffer did not improve enzyme solubilization. Molecular forms of 16S (A12), 10.5S (G4) and 4.0S (G1) are separated by sedimentation analyses of Triton X-100 or bicarbonate-solubilized AChE. Monomeric AChE, released under alkaline conditions (G1A), displays amphiphilic properties. G1A, but not G4 and A12, forms are retained in a phenyl-Sepharose column and this allows its separation from hydrophilic forms. Isolated monomers extracted with Triton X-100 (G1D) or alkaline buffer showed identical kinetic behaviour. The two forms reacted with lectins in a similar manner. However, thermal inactivation experiments revealed that about 90 and 40% of the activity in the G1D and G1A forms were lost by heating at 50 degrees C, following the same rate constant (k = 0.130 min-1). Addition of Triton X-100 to the G1A form leads to an increase of its thermal sensitivity, the enzyme being fully inactivated very rapidly (k = 0.230 min-1). The results suggest that the hydrophobic moiety of the enzyme might be exposed or hidden depending on the environmental hydrophobicity. Changes in the composition of the solvent will determine the final conformational state of the protein.  相似文献   

16.
Acetylcholinesterase (AChE) is composed of several distinct molecular forms, which are identified and partly resolved by velocity sedimentation analysis on sucrose gradients. We made the assumption that each AChE form sediments as a peak of activity with a gaussian shape in the continuous sucrose gradient. We experimentally demonstrate that the complex AChE profiles can be decomposed in gaussian distributions of separate molecular entities. We performed a high salt-detergent extraction of AChE from mouse skeletal muscle and isolated fractions enriched in each particular from. These fractions were then submitted to a second sedimentation, to assess the stability and to further characterize each AChE form. Then, we calculated the statistical significance level of each AChE form and identified up to 9 separate molecular specifies in mouse adult muscle. These forms are the major "4 S", "6.5 S", "10 S", "12 S" and "16 S" and minor molecular active components of AChE. These results suggest complex structural interactions between catalytic and non catalytic subunits of AChE and do not simply fit the tailed asymmetric globular model of AChE with six molecular species.  相似文献   

17.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

18.
Multiple molecular forms of acetylcholinesterase (AChE EC 3.1.1.7) from fast and slow muscle of rat were examined by velocity sedimentation. The fast extensor digitorum longus muscle (EDL) hydrolyzed acetylcholine at a rate of 110 mumol/g wet weight/hr and possessed three molecular forms with apparent sedimentation coefficients of 4S, 10S, and 16S which contribute about 50, 35, and 15% of the AChE activity. The slow soleus muscle hydrolyzed acetylcholine at a rate of 55 mumol/g wet weight/hr and has a 4S, 10S, 12S, and 16S form which contribute 22, 18, 34, and 26% of AChE activity, respectively. A single band of AChE activity was observed when a 1M NaCl extract with CsCl (0.38 g/ml) was centrifuged to equilibrium. Peak AChE activity from EDL and SOL extracts were found at 1.29 g/ml. Resedimentation of peak activity from CsCl gradients resulted in all molecular forms previously found in both muscles. Addition of a protease inhibitor phenylmethylsulfonyl chloride did not change the pattern of distribution. The 4S form of both muscles was extracted with low ionic strength buffer while the 10S, 12S, and 16S forms required high ionic strength and detergent for efficient solubilization. All molecular forms of both muscles have an apparent Km of 2 x 10(-4) M, showed substrate inhibition, and were inhibited by BW284C51, a specific inhibitor of AChE. The difference between these muscles in regards to their AChE activity, as well as in the proportional distribution of molecular forms, may be correlated with sites of localization and differences in the contractile activity of these muscles.  相似文献   

19.
1. Xenopus laevis oocytes express endogenously two components of the cholinergic system: the muscarinic receptors and the acetylcholinesterase (AChE). 2. A biochemical characterization of this enzyme was carried out. 3. The results established that the activity found in the oocytes correspond to 'true' AChE with a molecular weight of 65,000 Da and a sedimentation coefficient of 3-4 S. 4. The enzyme aggregates in the absence of detergent suggesting that it possess an hydrophobic character; despite that, it is not sensitive to PIPLC. 5. A comparison with the Xenopus brain and muscle AChE shows different post-translational modifications and catalytic properties with the oocyte AChE.  相似文献   

20.
Several molecular forms of acetylcholinesterase were obtained from Schistosoma mansoni homogenates by extraction in either low-salt buffer, high-salt buffer or detergent buffer. The low-salt soluble form amounts to 25% of the total activity. By contrast, the extract obtained in the presence of Triton X-100 possessed almost almost 3-fold higher enzymatic activity, most of it (86%) being retained in the soluble extract (100 000 X g). High-salt concentration (1 M NaCl) also has a solubilizing effect, but to a lesser extent (50%). Acetylcholinesterase can also be solubilized by treatment with a solution of 1% methylmannoside (40%). In the presence of non-ionic detergents, the enzyme behaves as monodisperse 8 S form. In the absence of detergent the low-salt soluble extract is polydisperse: it contains a 10 S and a 32 S component, the latter could represent high polymers. The molecular form released from tissue homogenate by treatment with alpha-methylmannoside is polydisperse: it contains a major 10 S and a minor 32 S component. Differences in sedimentation coefficient were observed among the enzymes extracted with detergent from the various life cycle stages of the parasite. The enzyme from the cercarial stage sediments as a single 8 S peak. The adult worm exhibits an additional acetylcholinesterase peak of 18 S representing approx. 30% of the total enzymatic activity. The molecular weight of the major 8 S species, as determined by gel filtration, is 450 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号