首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A method for determining rates of ammonium assimilation in marine algae is described. Ammonium assimilation is defined as the decrease in total (medium + cellular) ammonium. The protonophore carbonyl cyanide m- chlorophenylhydrazone (CCCP) was used to distinguish between uptake and assimilation of ammonium. Ammonium uptake by nitrogen-replete and nitrogen-starved cells of the diatom Phaeodactylum tricornutum Bohlin and the green macroalga Enteromorpha sp. was completely (98%–99%) inhibited in the presence of 100 μM CCCP. In addition to inhibiting further uptake of ammonium, CCCP promoted the release of unassimilated ammonium by nitrogen-replete and nitrogen-starved P. tricornutum and Enteromorpha that had been allowed to take up ammonium for a period. Most (97.5%) of preaccumulated 14C-methylammonium was released by nitrogen-starved P. tricornutum in the presence of CCCP. Specific rates of ammonium assimilation in nitrogen-replete cultures of P. tricornutum were identical to the maximum growth rate, but specific rates in nitrogen-starved cultures were fourfold greater. Rates of ammonium assimilation in Enteromorpha during both the surge and the internally controlled uptake phases were the same as the internally controlled rate of uptake, suggesting that the latter is a reliable measure of the maximum rate of assimilation.  相似文献   

2.
Seedlings of Scots pine ( Pinus sylvestris L.) were grown on perlite for 21 days under controlled conditions. Apart from the water control, KNO3 (15 m M ), (NH4)2SO4 (7.5 m M ), and NH4NO3 (15 m M ) were offered to study the effects of a high nitrogen supply on nitrogen assimilation. In some experiments 1.3 m M potassium was added to the basic ammonium solutions. In labelling studies nitrate and ammonium were 2.3 atom%15N-enriched. It was found that over the 21-day period approximately three times more ammonium-N was taken up than nitrate-N. However, nitrate and ammonium, applied simultaneously, were taken up to the same extent as if they were applied separately (additivity). The presence of K+ in the medium did not affect N-uptake. Among the soluble N-containing compounds nitrate, ammonium and 8 amino acids were quantified. It was found that assimilation of nitrate can cope with the uptake of NO3 under all circumstances. Neither free nitrate nor ammonium or amino acids accumulated to an extent exceeding the values of water-grown seedlings. On the other hand, in case of high ammonium supply considerably more nitrogen was taken up than could be incorporated into nonsoluble N-containing substance ('protein'). The remaining nitrogen was found to accumulate in intermediary storage pools (free NH4+, glutamine, asparagine, arginine). Part of this accumulated N could be incorporated into protein when potassium was offered in the nutrient solution. It is concluded that potassium is a requirement for a high rate of protein synthesis not only in crop plants but also in conifers.  相似文献   

3.
In N-sufficient cells of Chlorella sorokiniana Shihira and Krauss strain 211/8K (CCAP of Cambridge University), assimilation of ammonium was strictly dependent on light and CO2, and was severely inhibited by 100 μ M atrazine or 10 μ M 3-(3,4-dichlorophenyl)-1, l-dimethylurea (DCMU). In N-limited cells, assimilation of NH4+ took place at similar rates in both light and darkness, which were 1.6-fold higher than the rate of light-dependent assimilation by N-sufficient cells. Assimilation by N-limited cells was inhibited by l -methionine- dl -sulfoximine (MSX), but not by atrazine or DCMU.
The rate of photosynthetic O2 evolution was 2.9±0.9 mmol ml−1 packed cell volume (PCV) h−1 in N-sufficient cells, and 0.64±0.12 mmol ml−1 PCV h−1 in N-limited cells. In the latter resupply of ammonium resulted in a rapid activation by 22%;, followed by a time-dependent increase of the photosynthetic O2 evolution, which after 12 h reached the same rate as in N-sufficient cells.
Respiratory consumption of oxygen in darkness in N-sufficient and N-limited cells was 0.10±0.03 and 0.11±0.02 mmol ml−1 PCV h−1, respectively. Addition of ammonium was without effect on respiration of N-sufficient cells, but resulted in a 4-fold stimulation of respiration of N-limited cells. Such stimulation took place also in cells treated with DCMU, atrazine, or MSX, and it was also promoted by methylammonium. The stimulation of respiration lasted for several hours.  相似文献   

4.
The marine alga Heterosigma carterae Hulburt (Raphidophyta) was grown in N-limiting batch cultures using either nitrate or ammonium as the N source, at photon flux densities (PFDs) of 50, 200, and 350 μmol·m-2·s-1 in a 12:12 h LD cycle. Carbon content could be estimated from biovolume (μg C = 0.278 × nL; R = 0.98) but not reliably from pigment content. During exponential growth, ammonium-grown cells (in comparison with nitrate-grown cells at the same PFD) attained higher growth rates by at least 20%, contained more N, and had a lower C:N ratio, higher concentrations of intracellular free amino acids, and higher ratios of glutamine: glutamate (Gln: Glu) and asparagine: aspartate (Asn:Asp). Growth was nearly light-saturated on ammonium at 200 μmol·m-2·s-1 (cell-specific growth rate of 1.2 d-1) but probably not saturated in nitrate-grown cells at 350 μmol·m-2·s-1. PFD did not affect Gln: Glu or Asn: Asp for a given N source. These results indicate that the nitrate-growing cells were more N-stressed than those using ammonium (which in contrast were relatively C-stressed) and that this organism would show an enhanced competitive advantage against other species when supplied with a transient supply of ammonium rather than nitrate .  相似文献   

5.
Abstract. A field study was conducted to determine the relationship of solar-excited chlorophyll a fluorescence to net CO2 assimilation rate in attached leaves. The Fraunhofer line-depth principle was used to measure fluorescence at 656.3 nm wavelength while leaves remained exposed to full sunlight and normal atmospheric pressures of CO2 and O2. Fluorescence induction kinetics were observed when leaves were exposed to sunlight after 10 min in darkness. Subsequently, fluorescence varied inversely with assimilation rate. In the C4 Zea mays , fluorescence decreased from 2.5 to 0.8 mW m-2 nm-1 as CO2 assimilation rate increased from 1 to 8 μmol m-2 s-1 (r2= 0.520). In the C3 Liquidambar styraciflua and Pinus taeda , fluorescence decreased from 6 to 2 mW m-2 nm-1 as assimilation rate increased from 2 to 5 or 0 to 2 μmol m-2 s-1 (r2= 0.44 and 0.45. respectively). The Fraunhofer line-depth principle enables the simultaneous measurement of solar-excited fluorescence and CO2 assimilation rate in individual leaves, but also at larger scales. Thus, it may contribute significantly to field studies of the relationship of fluorescence to photosynthesis.  相似文献   

6.
Four-year-old seedlings of Scots pine ( Pinus sylvestris L.) were exposed to filtered air (FA), and to FA supplemented with NH3 (60 and 240 μg m−3) in controlled-environment chambers for 14 weeks. Exposure to the higher NH3 concentration resulted in an increased activity of glutamine synthetase (GS, EC 6.3.1.2), and an increase in the concentrations of soluble proteins, total nitrogen, free amino acids and leaf pigments in the needles. The GS activity (μmol g−1 fresh weight h−1) in the needle extract increased to levels 69% higher than in FA and the soluble protein concentration to levels 22% higher. Total nitrogen concentration in the needles was 42% higher than in FA, while the free amino acid concentration was 300% higher, which was caused by an increase in arginine, glutamate, aspartate and glutamine. Chlorophyll a , chlorophyll b and carotenoid concentrations were 29, 38 and 11% higher, respectively. Neither the glutamate dehydrogenase (GDH, EC 1.4.1.2) activity nor the concentrations of free NH4+ and glucose in the needles were affected by exposure to NH3. After NH3 fumigation at 240 μg m−3 the starch concentration decreased by 39% relative to the FA. The results indicate that the metabolism of Scots pine acclimates to concentrations of NH3 which are 3 to 10 times higher than the average concentration in areas with intensive stock farming. The possible mechanisms underlying acclimation to NH3 are discussed.  相似文献   

7.
Abstract. The 15N isotope was used to compare the uptake and the assimilation of NH4+ and NO3 nitrogen in ryegrass ( Lolium perenne L.) during regrowth after cutting. Uptake of nitrate-N, expressed per plant, was at all times greater than ammonium-N uptake and assimilation decreased in roots and stubble while its assimilation was maintained at a high level in leaves. It has been suggested that ammonium assimilation is directly related to the availability of carbohydrates in the sink organ (leaves) resulting from their remobilization from the source organs (roots and stubble). Nitrate reduction decreased in all organs, while the uptake of NO3 was still high. After this first period of regrowth, nitrogen assimilation both from nitrate and ammonium increased in all the plants. Nitrate reduction capacity (expressed in μg NO3-N reduced per g D.W. per d) is 7.5 and 22.5 times greater in leaves than in stubble and roots, respectively. Therefore, nitrogen assimilation in stubble and particularly in roots was mainly dependent on ammonium nitrogen.  相似文献   

8.
The growth of the marine flagellate Isochrysis galbana was followed in batch cultures at four concentrations of dissolved inorganic carbon (DIC), from C- and N-replete lag phase into C- and/or N-deplete stationary phase. Organic buffers were omitted from the growth medium, and culture pH was maintained at 8.30±0.05 by the addition of acid or alkali. The responses of the flagellate to N stress included an increase in the C:N ratio, and decreases in the ratios of glutamine (Gln):glutamate (Glu) and Chl a :C, and the cell Chl a quota. Conversely, the responses to C stress included a decrease in the C:N ratio, and increases in the ratios of Gln:Glu and Chl a :C, and the cell Chl a quota. The relationship between carbon-specific growth rate (C-μ), and the concentration of extracellular DIC, [DIC]ext, exhibited Michaelis–Menten type kinetics with a half saturation constant, K G(DIC), of 81 μM. Comparative studies of the diatom Phaeodactylum tricornutum showed similar results, although the value of K G(DIC) was lower at 30 μM.  相似文献   

9.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

10.
Sugar-beet plants ( Beta vulgaris L. cv. Monohill) were cultivated for 4 weeks in a complete nutrient solution. Indirect effects of cadmium were studied by adding 5, 10 or 20 μ M CdCl2 to the culture medium while direct effects were determined by adding 1, 5, 20, 50 or 2 000 μ M CdCl2 to the assay media. The photosynthetic properties were characterized by measurement of CO2 fixation in intact plants, fluorescence emission by intact leaves and isolated chloroplasts, photosystem (PS) I and PSII mediated electron transport of isolated chloroplasts, and CO2-dependent O2 evolution by protoplasts. When directly applied to isolated leaves, protoplasts and chloroplasts. Cd2+ impeded CO2 fixation without affecting the rates of electron transport of PSI or PSII or the rate of dark respiration. When Cd2+ was applied through the culture medium the capacity for, and the maximal quantum yield of CO2 assimilation by intact plants both decreased. This was associated with: (1) decreased total as well as effective chlorophyll content (PSII antennae size), (2) decreased coupling of electron transport in isolated chloroplasts, (3) perturbed carbon reduction cycle as indicated by fluorescence measurements. Also, protoplasts isolated from leaves of Cd2+-cultivated plants showed an increased rate of dark respiration.  相似文献   

11.
Abstract Rhizobium meliloti can synthesize an ammonium carrier as demonstrated by concentrative methylammonium uptake ( K m= 2 μ M), which is competitively inhibited by ammonium ( K i= 1.2 μ M). The carrier is under nitrogen control: its synthesis is repressed by ammonium, glutamine and asparagine. The asparagine effect may be of importance for the transfer of ammonia from the bacterium to the plant in the nodule.  相似文献   

12.
Impact of gaseous nitrogen deposition on plant functioning   总被引:5,自引:0,他引:5  
Dry deposition of NH3 and NOx (NO and NO2) can affect plant metabolism at the cellular and whole-plant level. Gaseous pollutants enter the plant mainly through the stomata, and once in the apoplast NH3 dissolves to form NH4+, whereas NO2 dissolves to form NO3 and NO2. The latter compound can also be formed after exposure to NO. There is evidence that NH3-N and NOx-N can be reversibly stored in the apoplast. Temporary storage might affect processes such as absorption rate, assimilation and re-emission. Once formed, NO3 and NO2 can be reduced, and NH4+ can be assimilated via the normal enzymatic pathways, nitrate reductase (NR), nitrite reductase and the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Fumigation with low concentrations of atmospheric NH3 increases in vitro glutamine synthetase activity, but whether this involves both or only one of the GS isoforms is still an open question. There seems to be no correlation between fumigation with low concentrations of NH3 and in vitro GDH activity. The contribution of atmospheric NH3 and NO2 deposition to the N budget of the whole plant has been calculated for various atmospheric pollutant concentrations and relative growth rates ( RGRs ). It is concluded that at current ambient atmospheric N concentrations the direct impact of gaseous N uptake by foliage on plant growth is generally small.  相似文献   

13.
Abstract Acremonium persicinum grown in batch culture with ammonium tartrate as the nitrogen source possessed an NADP+-dependent glutamate dehydrogenase and a glutamine synthetase. Glutamate synthase was not detected under the culture conditions used. Kinetic studies of the NADP+-dependent glutamate dehydrogenase at 25°C and pH 7.6 revealed an apparent K m of 3.2 × 10−4 M for 2-oxoglutarate and an apparent K m of 1.0 × 10−5 M for ammonium ions, with corresponding apparent V max values of 0.089 and 0.13 μmol substrate converted/min/mg of protein, respectively. Glutamine synthetase was measured by the γ-glutamyl transferase reaction at 30°C and pH 7.55. This transferase reaction of glutamine synthetase had a higher rate at 30°C than at 25°C or 37°C.  相似文献   

14.
Nitrogen regulation in tylosin production by Streptomyces fradiae NRRL 2702 was studied in chemostat culture using a soluble synthetic medium. The maximum value of specific tylosin formation rate ( q TYL) was 1·13 mg g−1 h−1 at the specific growth rate (μ) of 0·05 h−1, and q TYL decreased with increasing levels of the specific growth rate after reaching a rate of 0·1 h−1. The optimum conditions for tylosin formation were that the specific ammonium ion uptake rate ( q N) and μ were 0·13 mmol g−1 h−1 and 0·05 h−1, respectively. The specific formation rates of threonine dehydratase (TDT) and tylosin were repressed by high levels of specific ammonium ion uptake rate. This study showed the adaptation to chemostat cultures of the nitrogen regulation of tylosin fermentations.  相似文献   

15.
Abstract. Poplar shoots ( Populus euramericana L.) obtained from cuttings were exposed for 6 or 8 weeks to NH3 concentrations of 50 and 100 μgm−3 or filtered air in fumigation chambers. After this exposure the rates of NH3 uptake, transpiration, CO2 assimilation and respiration of leaves were measured using a leaf chamber. During the long-term exposure also modulated chlorophyll fluorescence measurements were carried out to obtain information about the photosynthetic performance of individual leaves. Both fluorescence and leaf chamber measurements showed a higher photosynthetic activity of leaves exposed to 100 μg NH3 m−3. These leaves showed also a larger leaf conductance and a larger uptake rate of NH3 than leaves exposed to 50 μg m−3 NH3 or filtered air. The long-term NH3 exposure did not induce an internal resistance against NH3 transport in the leaf, nor did it affect the leaf cuticle. So, not only at a short time exposure, but also at a long-term exposure NH3 uptake into leaves can be calculated from data on the boundary layer and stomatal resistance for H2O and ambient NH3-concentration. Furthermore, the NH3 exposure had no effect on the relation between CO2-assimilation and stomatal conductance, indicating that NH3 in concentrations up to 100 μg m−3 has no direct effect on stomatal behaviour; for example, by affecting the guard or contiguous cells of the stomata.  相似文献   

16.
The phosphorylation state of the putative signal transduction protein PII from the cyanobacterium Synechococcus sp. strain PCC 7942 depends on the cellular state of nitrogen and carbon assimilation. In this study, dephosphorylation of phosphorylated PII protein (PII-P) was investigated both in vivo and in vitro . The in vivo studies implied that PII-P dephosphorylation is regulated by inhibitory metabolites involved in the glutamine synthetase–glutamate synthase pathway of ammonium assimilation. An in vitro assay for PII-P dephosphorylation was established that revealed a Mg2+-dependent PII-P phosphatase activity. PII-P phosphatase and PII kinase activities could be separated biochemically. A partially purified PII-P phosphatase preparation also catalysed the dephosphorylation of phosphoserine/phosphothreonine residues on other proteins in a Mg2+-dependent manner. However, only dephosphorylation of PII-P was regulated by synergistic inhibition by ATP and 2-oxoglutarate. As the same metabolites stimulate the PII kinase activity, it appears that the phosphorylation state of PII is determined by ATP and 2-oxoglutarate-dependent reciprocal reactivity of PII towards its phosphatase and kinase.  相似文献   

17.
The effects of mycorrhiza formation in combination with elevated CO2 concentrations on carbon metabolism of Norway spruce ( Picea abies ) seedlings and aspen ( Populus tremula × Populus tremuloides ) plantlets were analysed. Plants were inoculated for 6 wk with the ectomycorrhizal fungi Amanita muscaria and Paxillus involutus (aspen only) in an axenic Petri-dish culture at 350 and 700 μl l−1 CO2 partial pressure. After mycorrhiza formation, a stimulation of net assimilation rate was accompanied by decreased activities of sucrose synthase, an increased activation state of sucrose-phosphate synthase, decreased fructose-2,6-bisphosphate and starch, and slightly elevated glucose-6-phosphate contents in source leaves of both host species, independent of CO2 concentration. Exposure to elevated CO2 generally resulted in higher net assimilation rates, increased starch as well as decreased fructose-2,6-bisphosphate (aspen only) content in source leaves of both mycorrhizal and nonmycorrhizal plants. Our data indicate only slightly improved carbon utilization by mycorrhizal plants at elevated CO2. They demonstrate however, that both factors which modulate the sink-source properties of plants increase the capacity for sucrose synthesis in source leaves mainly by allosteric enzyme regulation.  相似文献   

18.
Prokaryotic picoplankton such as Synechococcus are relatively abundant in putatively Fe-limited high-nutrient, low-chlorophyll (HNLC) regions of the oceans. The physiology of Synechococcus under Fe stress has been studied less than eukaryotic algae. Recent evidence suggests that although biomass and growth rates of Synechococcus are not typically Fe limited in situ, cells may still exhibit symptoms of Fe stress. We grew Synechococcus A2169 and WH7803 in laboratory batch cultures in the artificial medium Aquil and enriched natural seawater, at a series of Fe concentrations and Fe:macronutrient ratios, and with either nitrate or ammonium as the sole nitrogen source. Cell yields, and in some experiments exponential specific growth rate (μ), were more readily Fe limited in the Atlantic isolate WH7803 than in the equatorial Pacific isolate A2169. In both strains, final cell yields spanned about an order of magnitude and decreased continuously with Fe concentration from 900 to 3.6 nM (150 μM N, 10 μM P), whereas μ decreased much less and only at Fe concentrations below 90 nM. Synechococcus yield was controlled by both absolute Fe concentration and Fe:macronutrient ratio, but μ was determined primarily by absolute Fe concentration. Contrary to theoretical predictions, neither yield nor μ was higher in Fe-limited cells grown in ammonium compared to nitrate. Under severe Fe stress, cellular chlorophyll (Chl) content and light-saturated gross photosynthetic capacity (Pcellm) decreased proportionately, and dark respiration (Rcelld) increased, such that net Pcellm was extremely low but gross PChlm was unchanged. This is the first report of an absolute increase in Rcelld under Fe stress in phytoplankton.  相似文献   

19.
Cytosolic and plastidic l -glutamine synthetase (EC 6.3.1.2) isoenzymes from Sphagnum fallax Klinggr. (Klinggr. clone 1) were separated by size-exclusion and ion exchange chromatography. The cytosolic enzyme (GS1) was purified to apparent electrophoretic homogeneity. The native enzyme had a molecular mass of 390 ± 20 kDa as estimated by gel filtration and was apparently composed of 8 subunits with molecular masses of 48 kDa. GS1 activity could be measured from pH 6.8 to 8.6 in 50 m M imidazole buffer, with a broad optimum between pH 7.2 and 8.0. The Km values were 2.5 m M , 0.5 m M and 0.5 m M for l -glutamate, ammonium and ATP, respectively. The enzyme was inhibited by more than 10 m M ammonium or glutamate. The incorporation of 15NH4+ into amino acids was observed in vivo using 15 NMR. Label from ammonium was first detected in the amide N of glutamine, and only subsequently in the amino N of glutamate. Moreover, no assimilation was detected in the presence of the specific GS inhibitor methionine sulfoximine. These observations are consistent with a dominant role for GS in the assimilation of ammonium in Sphagnum .  相似文献   

20.
Abstract From chemostat enrichments conducted at dilution rates of 0.025, 0.12 and 0.25 h−1 glutamate- and aspartate-fermenting bacteria were isolated. The dominant aspartate-fermenting strains in all these enrichments belonged to the genus Campylobacter , whereas 3 dissimilar types of glutamate-fermenting bacteria predominated at the different dilution rates. One of these strains was identified as Clostridium cochlearium . The remaining two were designated as strain DKglu16 (glutamate → acetate + propionate + ammonium + carbon dioxide) and DKglu21 (glutamate → acetate + formate + ammonium + carbon dioxide). Grown in continuous culture under glutamate limitation, strain DKglu16 (μmax= 0.13 h−1; K s= 1.9 μM) outcompeted C. cochlearium (μmax= 0.36 h−1; K s= 7 μM) at low dilution rates, but was outgrown at higher rates of dilution (0.044 h−1). In glutamate-limited continuous culture the competitiveness of strain DKglu16 increased considerably when lactate was added to the feed in addition to glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号